ZK-SNARKs AND Elliptic curves

Youssef EI Housni

ConsenSys, LIX and Inria, Paris, France

Aarhus Seminar 11/05/2022

Overview

(1) Preliminaries

- Zero-knowledge proof (ZKP)
- ZK-SNARK
- proof composition
(2) Choice of elliptic curves
- SNARK curves
- Implementations

Zero-Knowledge Proofs

Alice

I know the solution to this complex equation

Bob

No idea what the solution is but Alice must know it

Zero-Knowledge for public keys: Sigma protocol

Alice

I know x such that $g^{x}=y$

Zero-Knowledge for public keys: Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
r \stackrel{\text { random }}{\leftarrow} \mathbb{Z}_{p}
$$

$$
A=g^{r}
$$

Zero-Knowledge for public keys: Sigma protocol

Alice

Bob

I know x such that $g^{x}=y$
$r \stackrel{\text { random }}{\leftarrow} \mathbb{Z}_{p}$

$c \stackrel{\text { random }}{\leftarrow} \mathbb{Z}_{p}$

Zero-Knowledge for public keys: Sigma protocol

Alice

Bob

I know x such that $g^{x}=y$

$$
\begin{aligned}
r \stackrel{\text { random }}{\longleftarrow} \mathbb{Z}_{p} & \begin{array}{c}
A=g^{r} \\
\\
s=r+c \cdot x
\end{array} c c \stackrel{c}{\longleftrightarrow} \quad c
\end{aligned}
$$

Zero-Knowledge for public keys: Sigma protocol

Alice

Bob

I know x such that $g^{x}=y$

$$
\begin{aligned}
& r \stackrel{\text { random }}{\Leftarrow} \mathbb{Z}_{p} \\
& A=g^{r} \\
& c \stackrel{\text { random }}{\longleftarrow} \mathbb{Z}_{p} \\
& s=r+c \cdot x \longrightarrow \quad s \quad g^{s} \stackrel{?}{=} A \cdot y^{c} \\
& \text { with } A \cdot y^{c}=g^{r} \cdot g^{x \cdot c} \\
& \text { then } g^{r} \cdot g^{x \cdot c}=g^{r+x \cdot c}
\end{aligned}
$$

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
\begin{array}{lll}
r \stackrel{\text { random }}{\leftrightarrows} \mathbb{Z}_{p} \\
& \\
c=g^{r} \\
c=H(A, y) \\
s=r+c \cdot x & & \\
& & g^{s} \stackrel{?}{=} A \cdot y^{c} \\
c \stackrel{?}{=} H(A, y)
\end{array}
$$

ZKP families

- specific statement vs general statement
- interactive vs non-interactive protocol
- transparent setup vs trapdoored setup vs no setup
- Any verifier vs given verifier
- prover complexity (Alice)
- verifier complexity (Bob)
- communication complexity (size of the proof and the setup)
- security assumptions, cryptographic primitive...
- ...

Blockchains and ZKP

A blockchain is a public peer-to-peer decentralized, transparent, immutable, paying ledger.

- Transparent: everything is visible to everyone
- Immutable: nothing can be removed once written
- Paying: everyone should pay a fee to use

Transparent $\xrightarrow[\text { Problem }]{ }$ confidentiality

Immutable $\xrightarrow[\text { Problem }]{ }$ scalability

Paying $\xrightarrow[\text { Problem }]{ }$ cost

setup, prover?, verifier?

Communication complexity
$\xrightarrow[\text { Solution }]{ }$ ZKP
Verifier complexity, prover?

ZKP literature landmarks

- First ZKP paper [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]
- Succinct Non-Interactive ZKP [M94]
- Succinct NIZK without the PCP Theorem [Groth10]
- "SNARK" terminology and characterization of existence [BCCT11]
- Succinct NIZK without PCP Theorem and Quasi-linear prover time [GGPR13]
- Succinct NIZK without with constant-size proof and constant-time verifier (Groth16)
- First succinct NIZK with universal and updatable setup [Sonic19]
- Active research and implementation on SNARK with universal and updatable setup [PLONK19]

Zero-knowledge proof

What is a zero-knowledge proof?
"I have a sound, complete and zero-knowledge proof that a statement is true". [GMR85]

Sound

False statement \Longrightarrow cheating prover cannot convince honest verifier.

Complete

True statement \Longrightarrow honest prover convinces honest verifier.

Zero-knowledge

True statement \Longrightarrow verifier learns nothing other than statement is true.

Zero-knowledge proof

ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
"I have a computationally sound, complete, zero-knowledge, succinct, noninteractive proof that a statement is true and that I know a related secret".

Succinct

Honestly-generated proof is very "short" and "easy" to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

ZK-SNARK

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that $z:=F(x, w)$.
A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :
Setup: $\quad(p k, v k) \quad \leftarrow \quad S\left(F, 1^{\lambda}\right)$

ZK-SNARK

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that $z:=F(x, w)$.
A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	$(p k, v k)$	\leftarrow	$S\left(F, 1^{\lambda}\right)$
Prove:	π	\leftarrow	$P(x, z, w, p k)$

ZK-SNARK

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that $z:=F(x, w)$.
A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	$(p k, v k)$	\leftarrow	$S\left(F, 1^{\lambda}\right)$
Prove:	π	\leftarrow	$P(x, z, w, p k)$
Verify:	false/true	\leftarrow	$V(x, z, \pi, v k)$

ZK-SNARK

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that $z:=F(x, w)$.
A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	$(p k, v k)$	\leftarrow	$S\left(F, 1^{\lambda}\right)$
Prove:	π	\leftarrow	$P(x, z, w, p k)$
Verify:	false/true	\leftarrow	$V(x, z, \pi, v k)$

> Anyone (trusted) $(p k, v k) \leftarrow S\left(F, 1^{\lambda}\right)$

ZK-SNARK

Succinctness: An honestly-generated proof is very "short" and "easy" to verify.

Definition [BCTV14b]

A succinct proof π has size $O_{\lambda}(1)$ and can be verified in time $O_{\lambda}(|F|+|x|+|z|)$, where $O_{\lambda}($.$) is some polynomial in the security$ parameter λ.

ZK-SNARKs in a nutshell

main ideas:
(1) Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
(2) Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high probability.
(3) Use homomorphic hiding cryptography to blindly verify the polynomial equation.
(9) Use Fiat-Shamir transform to make the protocol non-interactive.

Arithmetization of the statement

Statement \rightarrow Arithmetic circuit \rightarrow Rank 1 Constraint System (R1CS) \rightarrow Quadratic Arithmetic Program (QAP) \rightarrow zkSNARK Proof

$$
\begin{aligned}
U(x) V(x)-W(x) & =H(x) T(x) \quad(Q A P) \\
U(\tau) V(\tau)-W(\tau) & =H(\tau) T(\tau) \\
H H(U(\tau) V(\tau)-W(\tau) & =H(\tau) T(\tau))
\end{aligned}
$$

Arithmetization example

QAP

- F program with $N=n_{\text {in }}+n_{\text {out }} \in \mathbb{F} \mathrm{I} / \mathrm{O}$
- circuit of depth m
- QAP $\equiv u_{i}(x), v_{i}(x)$ and $w_{i}(x), i \in 0,1 \ldots m$ and $T(x)$ of degree d in $\mathbb{F}[x]$.
$c_{1}, \ldots, c_{N} \in \mathbb{F}$ is a valid assignment of $F \Longleftrightarrow \exists c_{N+1}, \ldots, c_{m} \in \mathbb{F}$ s.t. $T(x) \mid P(x)$, where $P(x)$ is:

$$
\begin{aligned}
& \left(u_{0}(x)+\sum_{i=1}^{m} c_{i} u_{i}(x)\right) \cdot\left(v_{0}(x)+\sum_{i=1}^{m} c_{i} v_{i}(x)\right)-\left(c_{0}(x)+\sum_{i=1}^{m} c_{i} w_{i}(x)\right) \\
& U(x) \cdot V(x)-W(x)
\end{aligned}
$$

Blind evaluation of QAP

Instead of verifying the QAP on the whole domain $\mathbb{F} \rightarrow$ verify it in a single random point $\tau \in \mathbb{F}$.

Schwartz-Zippel lemma

Any two distinct polynomials of degree d over a field \mathbb{F} can agree on at most a $d /|\mathbb{F}|$ fraction of the points in \mathbb{F}.

Blind evaluation of QAP

Let's take the example of polynomial U :

- Alice can send U to Bob and he computes $U(\tau) \rightarrow$ This breaks the zero-knowledge.
- Bob can send τ to Alice and she computes $U(\tau) \rightarrow$ This breaks the soundness.
We need a homomorphic hiding cryptographic primitive to evaluate $U(x)$ at τ without Bob learning U nor Alice learning τ.

Blind evaluation of QAP

$$
\begin{aligned}
U(\tau) & =u_{0}+u_{1} \tau+u_{2} \tau^{2}+\cdots+u_{d} \tau^{d} \\
H H(U(\tau)) & =u_{0}+u_{1} H H(\tau)+u_{2} H H\left(\tau^{2}\right)+\cdots+u_{d} H H\left(\tau^{d}\right)
\end{aligned}
$$

Homomorphic hiding function w.r.t.:

- d additions (arbitrary d)
- 1 multiplication (for $U \cdot V$ and $H \cdot T$).

Blind evaluation of QAP

bilinear pairings

A non-degenerate bilinear pairing $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$
non-degenerate: $\forall P \in \mathbb{G}_{1}, P \neq \mathcal{O}, \exists Q \in \mathbb{G}_{2}, e(P, Q) \neq 1_{\mathbb{G}_{T}}$

$$
\forall Q \in \mathbb{G}_{2}, Q \neq \mathcal{O}, \exists P \in \mathbb{G}_{1}, e(P, Q) \neq 1_{\mathbb{G}_{T}}
$$

bilinear:

$$
e([a] P,[b] Q)=e(P,[b] Q)^{a}=e([a] P, Q)^{b}=e(P, Q)^{a b}
$$

${ }^{1}$ Thanks to Diego for the tikz figure.

Blind evaluation of QAP

Blind evaluation can be achieved with black-box pairings:

$$
\begin{aligned}
e\left(H(\tau) G_{1}, T(\tau) G_{2}\right) \cdot e\left(W(\tau) G_{1}, G_{2}\right) & =e\left(U(\tau) G_{1}, V(\tau) G_{2}\right) \\
e\left(G_{1}, G_{2}\right)^{H(\tau) T(\tau)} \cdot e\left(G_{1}, G_{2}\right)^{W(\tau)} & =e\left(G_{1}, G_{2}\right) U(\tau) V(\tau) \\
C_{t e}^{H(\tau) T(\tau)+W(\tau)} & =C_{t e}^{U(\tau) V(\tau)}
\end{aligned}
$$

Notations

Pairing-based zkSNARK

- $E: y^{2}=x^{3}+a x+b$ elliptic curve defined over \mathbb{F}_{q}, q a prime power.
- r prime divisor of $\# E\left(\mathbb{F}_{q}\right)=q+1-t, t$ Frobenius trace.
- $-D$ CM discriminant, $4 q=t^{2}+D y^{2}$ for some integer y.
- d degree of twist.
- k embedding degree, smallest integer $k \in \mathbb{N}^{*}$ s.t. $r \mid q^{k}-1$.
- $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{q^{k}}\right)$ two groups of order r.
- $\mathbb{G}_{T} \subset \mathbb{F}_{q^{k}}^{*}$ group of r-th roots of unity.
- pairing $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$.

Proof composition

Example: Groth16 [Gro16]

Given an instance $\Phi=\left(a_{0}, \ldots, a_{\ell}\right) \in \mathbb{F}_{r}^{\ell}$ of a public NP program F

- $(p k, v k) \leftarrow S\left(F, \tau, 1^{\lambda}\right)$ where

$$
v k=\left(v k_{\alpha, \beta},\left\{v k_{\pi_{i}}\right\}_{i=0}^{\ell}, v k_{\gamma}, v k_{\delta}\right) \in \mathbb{G}_{T} \times \mathbb{G}_{1}^{\ell+1} \times \mathbb{G}_{2} \times \mathbb{G}_{2}
$$

- $\pi \leftarrow P(\Phi, w, p k)$ where

$$
\pi=(A, B, C) \in \mathbb{G}_{1} \times \mathbb{G}_{2} \times \mathbb{G}_{1}
$$

- $0 / 1 \leftarrow V(\Phi, \pi, v k)$ where V is

$$
\begin{equation*}
e(A, B)=v k_{\alpha, \beta} \cdot e\left(v k_{x}, v k_{\gamma}\right) \cdot e\left(C, v k_{\delta}\right) \quad\left(O_{\lambda}(|\Phi|)\right) \tag{1}
\end{equation*}
$$

and $v k_{x}=\sum_{i=0}^{\ell}\left[a_{i}\right] v k_{\pi_{i}}$ depends only on the instance Φ and $v k_{\alpha, \beta}=e\left(v k_{\alpha}, v k_{\beta}\right)$ can be computed in the trusted setup for $\left(v k_{\alpha}, v k_{\beta}\right) \in \mathbb{G}_{1} \times \mathbb{G}_{2}$.

Recursive ZK-SNARKs

An arithmetic mismatch

F any program is expressed in \mathbb{F}_{r}
P proving is performed over \mathbb{G}_{1} (and \mathbb{G}_{2}) (of order r)
V verification (eq. 1) is done in $\mathbb{F}_{q^{k}}^{*}$
F_{V} program of V is natively expressed in $\mathbb{F}_{q^{k}}^{*}$ not \mathbb{F}_{r}

Recursive ZK-SNARKs

F any program is expressed in \mathbb{F}_{r}
P proving is performed over \mathbb{G}_{1} (and \mathbb{G}_{2}) (of order r)
V verification (eq. 1) is done in $\mathbb{F}_{q^{k}}^{*}$
F_{V} program of V is natively expressed in $\mathbb{F}_{q^{k}}^{*}$ not \mathbb{F}_{r}

- $1^{\text {st }}$ attempt: choose a curve for which $q=r$ (impossible)
- $2^{\text {nd }}$ attempt: simulate \mathbb{F}_{q} operations via \mathbb{F}_{r} operations ($\times \log q$ blowup)
- $3^{\text {rd }}$ attempt: use a cycle/chain of pairing-friendly elliptic curves $\left[\mathrm{CFH}^{+} 15, \mathrm{BCTV} 14 \mathrm{a}, \mathrm{BCG}^{+} 20\right]$

Recursive ZK-SNARKs

Given q, search for a pairing-friendly curve E_{1} of order $h \cdot q$ over a field \mathbb{F}_{s}

Proof composition

cycles and chains of pairing-friendly elliptic curves

Definition

An m-chain of elliptic curves is a list of distinct curves

$$
E_{1} / \mathbb{F}_{q_{1}}, \ldots, E_{m} / \mathbb{F}_{q_{m}}
$$

where q_{1}, \ldots, q_{m} are large primes and

$$
\begin{equation*}
\# E_{2}\left(\mathbb{F}_{q_{2}}\right)=q_{1}, \ldots, \# E_{i}\left(\mathbb{F}_{q_{i}}\right)=q_{i-1}, \ldots, \# E_{m}\left(\mathbb{F}_{q_{m}}\right)=q_{m-1} \tag{2}
\end{equation*}
$$

Definition

An m-cycle of elliptic curves is an m-chain, with

$$
\begin{equation*}
\# E_{1}\left(\mathbb{F}_{q_{1}}\right)=q_{m} \tag{3}
\end{equation*}
$$

Choice of elliptic curves

ZK-curves

- SNARK
- E / \mathbb{F}_{q}

BN, BLS12, BW12?, KSS16? ... [FST10]

- pairing-friendly
- $r-1$ highly 2-adic (efficient FFT)
- Recursive SNARK (2-cycle)
- $E_{1} / \mathbb{F}_{q_{1}}$ and $E_{2} / \mathbb{F}_{q_{2}} \quad$ MNT4/MNT6 [FST10, Sec.5], ? [CCW19]
- both pairing-friendly
- $r_{2}=q_{1}$ and $r_{1}=q_{2}$
- $r_{\{1,2\}}-1$ highly 2 -adic (efficient FFT)
- $q_{\{1,2\}}-1$ highly 2 -adic (efficient FFT)
- Recursive SNARK (2-chain)
- $E_{1} / \mathbb{F}_{q_{1}} \quad \mathrm{BLS} 12\left(\right.$ seed $\left.\equiv 1 \bmod 3 \cdot 2^{\text {large }}\right)\left[\mathrm{BCG}^{+} 20\right]$, ?
- pairing-friendly
- $r_{1}-1$ highly 2 -adic
- $q_{1}-1$ highly 2 -adic
- $E_{2} / \mathbb{F}_{q_{2}}$

Cocks-Pinch algorithm

- pairing-friendly
- $r_{2}=q_{1}$

Choice of elliptic curves

Curve $E_{2} / \mathbb{F}_{q_{2}}$

- q is a prime or a prime power
- t is relatively prime to q
- r is prime
- r divides $q+1-t$
- r divides $q^{k} \quad 1$ (smallest $\left.k \in \mathbb{N}^{*}\right)$) r is a fixed chosen prime that divides $q+1-t$ and $q^{k}-1$ (smallest $\left.k \in \mathbb{N}^{*}\right)$
- $4 q-t^{2}=D y^{2}\left(\right.$ for $D<10^{12}$) and some integer y

Algorithm 1: Cocks-Pinch method

1 Fix k and D and choose a prime r s.t. $k \mid r-1$ and $\left(\frac{-D}{r}\right)=1$;
2 Compute $t=1+x^{(r-1) / k}$ for x a generator of $(\mathbb{Z} / r \mathbb{Z})^{\times}$;
3 Compute $y=(t-2) / \sqrt{-D} \bmod r$;
4 Lift t and y in \mathbb{Z};
5 Compute $q=\left(t^{2}+D y^{2}\right) / 4$ (in \mathbb{Q});
6 back to 1 if q is not a prime integer;

2-chains

Limitations and improvements

- $\rho=\log _{2} q / \log _{2} r \approx 2$ (because $q=f\left(t^{2}, y^{2}\right)$ and $t, y \stackrel{\$}{\leftarrow} \bmod r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm 2: Brezing-Weng method
1 Fix k and D and choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient ${ }^{1}$ s.t. $\sqrt{-D}$ and the primitive k-th root of unity ζ_{k} are in $K=\mathbb{Q}[x] / r(x)$;
2 Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_{k}+1$ in K;
3 Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $\left(\zeta_{k}-1\right) / \sqrt{-D}$ in K;
4 Compute $q(x)=\left(t^{2}(x)+D y^{2}(x)\right) / 4$ in $\mathbb{Q}[x]$;

- $\rho=2 \max (\operatorname{deg} t(x), \operatorname{deg} y(x)) / \operatorname{deg} r(x)<2$
- $r(x), q(x), t(x)$ but does $\exists x_{0} \in \mathbb{Z}^{*}, r\left(x_{0}\right)=r_{\text {fixed }}$ and $q\left(x_{0}\right)$ is prime ?

[^0]
2-chains

Notes

- $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{q^{k}}\right) \cong E^{\prime}[r]\left(\mathbb{F}_{q^{k / d}}\right)$ for a twist E^{\prime} of degree d.
- When $-D=-3$, there exists a twist E^{\prime} of degree $d=6$.
- Associated with a choice of $\xi \in \mathbb{F}_{q^{k / 6}}$ s.t. $x^{6}-\xi \in \mathbb{F}_{q^{k / 6}}[x]$ is irreducible, the equation of E^{\prime} can be either
- $y^{2}=x^{3}+b / \xi$ and we call it a D-twist or
- $y^{2}=x^{3}+b \cdot \xi$ and we call it a M-twist.
- For the D-type, $E^{\prime} \rightarrow E:(x, y) \mapsto\left(\xi^{1 / 3} x, \xi^{1 / 2} y\right)$,
- For the M-type $E^{\prime} \rightarrow E:(x, y) \mapsto\left(\xi^{2 / 3} x / \xi, \xi^{1 / 2} y / \xi\right)$

2-chains

Suggested construction: combines CP and BW
(1) Cocks-Pinch method

- $k=6$ and $-D=-3 \Longrightarrow 128$-bit security, \mathbb{G}_{2} coordinates in \mathbb{F}_{q}, GLV multiplication over \mathbb{G}_{1} and \mathbb{G}_{2}
- restrict search to $\operatorname{size}(q) \leq 768$ bits \Longrightarrow smallest machine-word size
(2) Brezing-Weng method
- choose $r(x)=q_{\mathrm{BLS} 12-377}(x)$
- $q(x)=\left(t^{2}(x)+3 y^{2}(x)\right) / 4$ factors $\Longrightarrow q\left(x_{0}\right)$ cannot be prime
- lift $t=r \times h_{t}+t\left(x_{0}\right)$ and $y=r \times h_{y}+y\left(x_{0}\right)$ [FK19, GMT20]

2-chains [CANS2020]

The suggested curve: BW6-761
$E: y^{2}=x^{3}-1$ over \mathbb{F}_{q} of 761 -bit with seed $x_{0}=0 \times 8508 c 00000000$ and polynomials:

$$
\begin{aligned}
& \text { Our curve, } k=6, D=3, r=q_{\mathrm{BLS} 12-377} \\
& \hline r(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3=q_{\mathrm{BLS} 12-377}(x) \\
& t(x)=x^{5}-3 x^{4}+3 x^{3}-x+3+h_{t} r(x) \\
& y(x)=\left(x^{5}-3 x^{4}+3 x^{3}-x+3\right) / 3+h_{y} r(x) \\
& q(x)=\left(t^{2}+3 y^{2}\right) / 4 \\
& q_{h_{t}=13, h_{y}=9(x)=\left(103 x^{12}-379 x^{11}+250 x^{10}+691 x^{9}-911 x^{8}\right.}^{\left.-79 x^{7}+623 x^{6}-640 x^{5}+274 x^{4}+763 x^{3}+73 x^{2}+254 x+229\right) / 9}
\end{aligned}
$$

Inner curves [EC2022] SNARK-0

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $p-1 \equiv r-1 \equiv 0 \bmod 2^{L}$ for large input $L \in \mathbb{N}^{*}$ (FFTs)
\rightarrow BLS $(k=12)$ family of roughly 384 bits with seed $x \equiv 1 \bmod 3 \cdot 2^{L}$

Universal SNARK

- 128-bit security
- pairing-friendly

- $p-1 \equiv r-1 \equiv 0 \bmod 2^{L}$ for large $L \in \mathbb{N}^{*}$ (FFTs)
\rightarrow BLS $(k=24)$ family of roughly
320 bits with seed $x \equiv 1 \bmod 3 \cdot 2^{L}$

Outer curves [EC2022]

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $r^{\prime}=p\left(r^{\prime}-1 \equiv 0 \bmod 2^{L}\right)$

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $r^{\prime}=p\left(r^{\prime}-1 \equiv 0 \bmod 2^{L}\right)$
\rightarrow BW $(k=6)$ family of roughly $768 \rightarrow$ BW $(k=6)$ family of roughly 704 bits with $(t \bmod x) \bmod r \equiv 0$ or 3 bits with $(t \bmod x) \bmod r \equiv 0$ or 3 $\rightarrow \mathrm{CP}(k=8)$ family of roughly 640 bits
$\rightarrow \mathrm{CP}(k=12)$ family of roughly 640 bits

All \mathbb{G}_{i} formulae and pairings are given in terms of x and some $h_{t}, h_{y} \in \mathbb{N}$.

Implementation and benchmark

Short-list of curves

We short list few 2-chains of the proposed families that have some additional nice engineering properties

- Groth16: BLS12-377 and BW6-761
- Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Cost of S, P and V algorithms for Groth16 and Universal. $n=$ number of multiplication gates, $a=$ number of addition gates and $\ell=$ number of public inputs. $\mathrm{M}_{\mathbb{G}}=$ multiplication in \mathbb{G} and $\mathrm{P}=$ pairing.

	S	P	V
Groth16	$3 n \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$(4 n-\ell) \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$3 \mathrm{P}, \ell \mathrm{M}_{\mathbb{G}_{1}}$
Universal	$d_{\geq n+a} \mathrm{M}_{\mathbb{G}_{1}}, 1 \mathrm{M}_{\mathbb{G}_{2}}$	$9(n+a) \mathrm{M}_{\mathbb{G}_{1}}$	$2 \mathrm{P}, 18 \mathrm{M}_{\mathbb{G}_{1}}$

Implementation and benchmark

https://github.com/ConsenSys/gnark (Go)
F_{V} : program that checks V (eq. 1$)(\ell=1, h / \neq / \phi \phi \phi \phi \varnothing \emptyset n=19378)$

Table: Groth16 (ms)

	S	P	V
BLS12-377	387	34	1
BLS24-315	501	54	4
BW6-761	1226	114	9
BW6-633	710	69	6
BW6-672	840	74	7

Table: Universal (ms)

	S	P	V
BLS12-377	87	215	4
BLS24-315	76	173	1
BW6-761	294	634	9
BW6-633	170	428	6
BW6-672	190	459	7

Play with gnark!

Write SNARK programs at https://play.gnark.io/ Example: Proof of Groth16 V program (eq. 1)

Conclusion

paper ePrint 2021/1359 (EUROCRYPT 2022)
implementations github/ConsenSys/gnark-crypto (Go)
gitlab/inria/snark-2-chains (SageMath/MAGMA)
follow-up work Co-factor clearing and subgroup membership on pairing-friendly elliptic curves ePrint 2022/352
(AFRICACRYPT 2022)
ongoing work Survey of elliptic curves for SNARKs (soon on ePrint)
Pairings in Rank-1 Constraint System (implemented + paper WIP)

THANK YOU!

and sorry today was not about the proofs about the proofs no kidding.

References I

(Rean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059-1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.
嗇 Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 276-294. Springer, Heidelberg, August 2014.

References II

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann architecture.
In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781-796. USENIX Association, August 2014.

固 Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry, 3(2):175-192, 2019.

References III

围 Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253-270. IEEE Computer Society, 2015.
ePrint 2014/976.
目 Georgios Fotiadis and Elisavet Konstantinou.
TNFS resistant families of pairing-friendly elliptic curves.
Theoretical Computer Science, 800:73-89, 31 December 2019.
David Freeman, Michael Scott, and Edlyn Teske.
A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224-280, April 2010.

References IV

Aurore Guillevic, Simon Masson, and Emmanuel Thomé.
Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation.
Des. Codes Cryptogr., 88:1047-1081, March 2020.
围 Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305-326. Springer, Heidelberg, May 2016.

[^0]: ${ }^{1}$ conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces infinitely many primes for infinitely many integers.

