Co-factor clearing and subgroup membership testing in pairing groups

Youssef El Housni ${ }^{1,2}$ Aurore Guillevic ${ }^{3}$ Thomas Piellard ${ }^{1}$

${ }^{1}$ ConsenSys
${ }^{2}$ Ecole Polytechnique / Inria Saclay
${ }^{3}$ Université de Lorraine / Inria Nancy / Aarhus University

AFRICACRYPT, July 2022

DALL-E mini

Al model generating images from any prompt!

$$
\begin{gathered}
\text { (Pairing) } \\
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
\end{gathered}
$$

- Pairing groups: $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} are sub-groups of some prime order order r.
- Co-factors: They are defined over some larger groups of composite orders $c_{1,2, T} \times r$

Let P be a random element of order $c_{1,2, T} \times r$

- Co-factor clearing: $\left[c_{1,2, T}\right] P=Q$
- Subgroup membership testing: $[r] Q \stackrel{?}{=} \mathcal{O}$

References

Youssef El Housni and Aurore Guillevic.
Families of SNARK-friendly 2-chains of elliptic curves.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, volume 13276 of LNCS, pages 367-396. Springer, 2022.
ePrint 2021/1359.
围 Youssef El Housni, Aurore Guillevic, and Thomas Piellard.
Co-factor clearing and subgroup membership testing on pairing-friendly curves.
In Lejla Batina and Joan Daemen, editors, AFRICACRYPT'2022, LNCS, Fes, Morocco, 7 2022. Springer.
to appear, ePrint 2022/352.

$$
\begin{gathered}
\text { (Pairing) } \\
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
\end{gathered}
$$

- Pairing groups: $\mathbb{G}_{1}, \mathbb{G}_{2}$ are sub-groups of some prime order order r.
- Co-factors: They are defined over some larger groups of composite orders $c_{1,2} \times r$

Let P and Q be random elements of order $c_{1} \times r$ and resp. $c_{2} \times r$,

- Co-factor clearing: $\left[c_{1}\right] P$
- Subgroup membership testing: $[r] P \stackrel{?}{=} \mathcal{O}$ and $[r] Q \stackrel{?}{=} \mathcal{O}$

Outline

(1) Motivation
(2) Faster co-factor clearing
(3) GLV on elliptic curves
(4) Subgroup membership testing with GLV
(5) Ensuring correct subgroup membership testing in \mathbb{G}_{1} and \mathbb{G}_{2}

Outline

(1) Motivation
(2) Faster co-factor clearing

3 GLV on elliptic curves
(4) Subgroup membership testing with GLV
(5) Ensuring correct subgroup membership testing in \mathbb{G}_{1} and \mathbb{G}_{2}

Motivation

- Hash-to-curve: encoding an arbitrary input to a point on an elliptic curve
- authenticated key exchanges [BM92] [J96] [BMP00]
- Identity-Based Encryption [BF01]
- Boneh-Lynn-Shacham signatures [BLS01]
- Verifiable Random Functions [MRV99]
- Oblivious Pseudorandom Functions [NR97]
- Pitfalls: small-subgroup-attacks [MO06] (MQV, Monero), non-injective behavior, implementation-defined behavior

Outline

(1) Motivation

(2) Faster co-factor clearing

3 GLV on elliptic curves

4 Subgroup membership testing with GLV
(5) Ensuring correct subgroup membership testing in \mathbb{G}_{1} and \mathbb{G}_{2}

Bilinear pairing

- $E: y^{2}=x^{3}+a x+b$ elliptic curve defined over \mathbb{F}_{q}, q a prime power.
- r prime divisor of $\# E\left(\mathbb{F}_{q}\right)=q+1-t$, t Frobenius trace.
- k embedding degree, smallest integer $k \in \mathbb{N}^{*}$ s.t. $r \mid q^{k}-1$.
- a bilinear pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ a group of order r
- $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{q^{k}}\right)$ a group of order r
- $\mathbb{G}_{T} \subset \mathbb{F}_{q^{k}}^{*}$ group of r-th roots of unity

Bilinear pairing

$$
e:\left(\mathbb{G}_{1},+\right) \times\left(\mathbb{G}_{2},+\right) \rightarrow\left(\mathbb{G}_{T}, \cdot\right)
$$

non-degenerate: $\forall P \in \mathbb{G}_{1}, P \neq \mathcal{O}, \exists Q \in \mathbb{G}_{2}, e(P, Q) \neq 1_{\mathbb{G}_{T}}$ $\forall Q \in \mathbb{G}_{2}, Q \neq \mathcal{O}, \exists P \in \mathbb{G}_{1}, e(P, Q) \neq 1_{\mathbb{G}_{T}}$
bilinear:

$$
e([a] P,[b] Q)=e(P,[b] Q)^{a}=e([a] P, Q)^{b}=e(P, Q)^{a b}
$$

efficiently computable

BLS12

$$
\text { Order } \# E\left(\mathbb{F}_{q}\right)=3 \ell^{2} r \text { where } \ell=(u-1) / 3, r=u^{4}-u^{2}+1
$$

Co-factor clearing

Given $P \in E\left(\mathbb{F}_{q}\right)$ (e.g. result of a hash map $\{0,1\}^{*} \rightarrow E\left(\mathbb{F}_{q}\right)$), compute $\left[c_{1}\right] P$ where $c_{1}=\# E\left(\mathbb{F}_{q}\right) / \# \mathbb{G}_{1}$

Wahby-Boneh, CHES'2019: $c_{1}=3 \ell^{2}$ but no point of order ℓ^{2} for BLS12-381 curve, only points of order dividing ℓ
\Longrightarrow compute only $[\ell] P$
Luck or generic pattern?

Schoof's theorem 3.7 (1987)

René Schoof.
Nonsingular plane cubic curves over finite fields.
Journal of Combinatorial Theory, Series A, 46(2):183-211, 1987.

$$
E[\ell] \subset E\left(\mathbb{F}_{q}\right) \Longleftrightarrow\left\{\begin{array}{l}
\ell^{2} \mid \# E\left(\mathbb{F}_{q}\right) \\
\ell \mid q-1 \\
\mathcal{O}\left(\frac{t^{2}-4 q}{n^{2}}\right) \subset \operatorname{End}_{\mathbb{F}_{q}}(E)\left(\text { or } \pi_{q} \in \mathbb{Z}\right)
\end{array}\right.
$$

Generic pattern for all BLS curves

BLS-k curves, $3 \mid k$

- $c=(x-1)^{2} / 3\left(x^{2 k / 3}+x^{k / 3}+1\right) / \Phi_{k}(x), k=3 \bmod 6$
- $c=(x-1)^{2} / 3\left(x^{k / 3}-x^{k / 6}+1\right) / \Phi_{k}(x), k=0 \bmod 6$
and $E\left(\mathbb{F}_{q}\right)[\ell]=\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ where $\ell=(x-1) / 3$.

Other pairing-friendly curves

(in Freeman, Scott, Teske.
A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, doi: "10.1007/s00145-009-9048-z", 2010.
For all curves in the Taxonomy paper,

- we identify the families such that the cofactor has a square factor
- we check the conditions of Schoof's theorem
- we list the curves with faster co-factor clearing: all but KSS and 6.6 where $k \equiv 2,3 \bmod 6$.

SageMath verification script at
gitlab.inria.fr/zk-curves/cofactor

Outline

(1) Motivation

(2) Faster co-factor clearing
(3) GLV on elliptic curves

4 Subgroup membership testing with GLV
(5) Ensuring correct subgroup membership testing in \mathbb{G}_{1} and \mathbb{G}_{2}

Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over \mathbb{F}_{q}, point $P \in E\left(\mathbb{F}_{q}\right)$, scalar $m \in \mathbb{Z}$ Output: $[m] P$
1 if $m=0$ then
2 return \mathcal{O}
3 if $m<0$ then
$4 \quad m \leftarrow-m ; P \leftarrow-P$
5 write m in binary expansion $m=\sum_{i=0}^{n-1} b_{i} 2^{i}$, where $b_{i} \in\{0,1\}$
$6 R \leftarrow P$
7 for $i=n-2$ downto 0 do
$8 \quad R \leftarrow[2] R$
$9 \quad$ if $b_{i}=1$ then
$0 \quad R \leftarrow R+P$
1 return R

Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over \mathbb{F}_{q}, point $P \in E\left(\mathbb{F}_{q}\right)$, scalar $m \in \mathbb{Z}$ Output: $[m] P$
1 if $m=0$ then
2 return \mathcal{O}
3 if $m<0$ then
$4 \quad m \leftarrow-m ; P \leftarrow-P$
5 write m in binary expansion $m=\sum_{i=0}^{n-1} b_{i} 2^{i}$, where $b_{i} \in\{0,1\}$
$6 R \leftarrow P$
7 for $i=n-2$ downto 0 do
$8 \quad R \leftarrow[2] R$
$9 \quad$ if $b_{i}=1$ then
$0 \quad R \leftarrow R+P$
1 return R
$\log _{2} m\left(\mathbf{D b l}+\frac{1}{2}\right.$ Add) in average

Multi-scalar multiplication

Input: Elliptic curve E over \mathbb{F}_{q}, points $P, Q \in E\left(\mathbb{F}_{q}\right)$, scalars $m \geq m^{\prime}>0 \in \mathbb{Z}^{+*}$ Output: $[m] P+\left[m^{\prime}\right] Q$
1 write $m=\sum_{i=0}^{n-1} b_{i} 2^{i}, m^{\prime}=\sum_{i=0}^{n^{\prime}-1} b_{i}^{\prime} 2^{i}$, where $b_{i}, b_{i}^{\prime} \in\{0,1\}$
$2 S \leftarrow P+Q$
3 if $n>n^{\prime}$ then $R \leftarrow P$
4 else $R \leftarrow S \quad\left(n=n^{\prime}\right)$
5 for $i=n-2$ downto 0 do
$R \leftarrow[2] R$
if $b_{i}=1$ and $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then

$$
R \leftarrow R+S
$$

else if $b_{i}=1$ and ($n^{\prime}<i$ or $b_{i}^{\prime}=0$) then

$$
R \leftarrow R+P
$$

else if $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then

$$
R \leftarrow R+Q
$$

3 return R

Multi-scalar multiplication

Input: Elliptic curve E over \mathbb{F}_{q}, points $P, Q \in E\left(\mathbb{F}_{q}\right)$, scalars $m \geq m^{\prime}>0 \in \mathbb{Z}^{+*}$ Output: $[m] P+\left[m^{\prime}\right] Q$
1 write $m=\sum_{i=0}^{n-1} b_{i} 2^{i}, m^{\prime}=\sum_{i=0}^{n^{\prime}-1} b_{i}^{\prime} 2^{i}$, where $b_{i}, b_{i}^{\prime} \in\{0,1\}$
$2 S \leftarrow P+Q$
3 if $n>n^{\prime}$ then $R \leftarrow P$
4 else $R \leftarrow S \quad\left(n=n^{\prime}\right)$
5 for $i=n-2$ downto 0 do
$R \leftarrow$ [2] R
if $b_{i}=1$ and $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then

$$
R \leftarrow R+S
$$

else if $b_{i}=1$ and ($n^{\prime}<i$ or $b_{i}^{\prime}=0$) then

$$
R \leftarrow R+P
$$

else if $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then

$$
R \leftarrow R+Q
$$

3 return R

$$
\log _{2} m\left(\mathbf{D b l}+\frac{3}{4}\right. \text { Add) in average }
$$

Gallant-Lambert-Vanstone (GLV) with endomorphism

Gallant, Lambert, Vanstone. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. CRYPTO 2001.

An example: $j=0$

Let $E: y^{2}=x^{3}+b$ defined over a prime field \mathbb{F}_{q} where $q=1 \bmod 3$. There exists $\omega \in \mathbb{F}_{q}$ such that $\omega^{3}=1, \omega \neq 1$

$$
\omega^{3}-1=\underbrace{(\omega-1)}_{\neq 0} \underbrace{\left(1+\omega+\omega^{2}\right)}_{=0}=0
$$

$$
\begin{aligned}
\phi: E\left(\mathbb{F}_{q}\right) & \rightarrow E\left(\mathbb{F}_{q}\right) \\
P(x, y) & \mapsto(\omega x, y), \text { where } \omega \in \mathbb{F}_{q}, \omega^{2}+\omega+1=0
\end{aligned}
$$

ϕ is an endomorphism,
$\phi^{2}:(x, y) \mapsto\left(\omega^{2} x, y\right), \phi^{3}=$ Id because $\omega^{3}=1$, but $\phi \neq \mathrm{Id} \Longrightarrow \phi^{2}+\phi+1=0$

Gallant-Lambert-Vanstone (GLV)

$$
\begin{gathered}
E: y^{2}=x^{3}+b \\
r \text { is prime, } r \mid \# E\left(\mathbb{F}_{q}\right), r^{2} \nmid \# E\left(\mathbb{F}_{q}\right) \text { : } \\
P \in E\left(\mathbb{F}_{q}\right)[r], Q \notin E\left(\mathbb{F}_{q}\right) \text { but over an extension of } \mathbb{F}_{q} \\
\Longrightarrow \phi(P)=[a] P+[0] Q=[\lambda] P
\end{gathered}
$$

where $\lambda \bmod r$ is the eigenvalue of $\phi: \lambda^{2}+\lambda+1=0 \bmod r, \approx \sqrt{r} \leq|\lambda| \leq r-1$.

Gallant-Lambert-Vanstone (GLV)

$$
\begin{gathered}
E: y^{2}=x^{3}+b \\
r \text { is prime, } r \mid \# E\left(\mathbb{F}_{q}\right), r^{2} \nmid \# E\left(\mathbb{F}_{q}\right): \\
P \in E\left(\mathbb{F}_{q}\right)[r], Q \notin E\left(\mathbb{F}_{q}\right) \text { but over an extension of } \mathbb{F}_{q} \\
\Longrightarrow \phi(P)=[a] P+[0] Q=[\lambda] P
\end{gathered}
$$

where $\lambda \bmod r$ is the eigenvalue of $\phi: \lambda^{2}+\lambda+1=0 \bmod r, \approx \sqrt{r} \leq|\lambda| \leq r-1$.
To speed-up [m]P, decompose $m=m_{0}+m_{1} \lambda$ with $\left|m_{0}\right|,\left|m_{1}\right| \approx \sqrt{r}$ and use $[m] P=\left[m_{0}\right] P+\left[m_{1} \lambda\right] P=\left[m_{0}\right] P+\left[m_{1}\right] \underbrace{\phi(P)}_{\text {cheap }}$ with multi-scalar mutliplication

$$
\frac{1}{2} \log _{2} r\left(\mathrm{Dbl}+\frac{3}{4} \mathrm{Add}\right)
$$

instead of $\log _{2}|m|\left(\mathrm{Dbl}+\frac{1}{2} \mathrm{Add}\right) \Longrightarrow$ factor ≈ 2 speed-up but cost of decomposition

Outline

(1) Motivation

(2) Faster co-factor clearing
(3) GLV on elliptic curves
(4) Subgroup membership testing with GLV
(5) Ensuring correct subgroup membership testing in \mathbb{G}_{1} and \mathbb{G}_{2}

BLS12

Barreto, Lynn, Scott method to get pairing-friendly curves.
Becomes more and more popular, replacing BN curves

$$
\begin{gathered}
E_{B L S}: y^{2}=x^{3}+b / \mathbb{F}_{q}, q \equiv 1 \bmod 3, j(E)=0, D=-3 \text { (ordinary) } \\
q=(u-1)^{2} / 3\left(u^{4}-u^{2}+1\right)+u \\
t=u+1 \\
r=\left(u^{4}-u^{2}+1\right)=\Phi_{12}(u) \\
q+1-t=(u-1)^{2} / 3\left(u^{4}-u^{2}+1\right) \\
t^{2}-4 q=-3 y(u)^{2} \rightarrow \text { no CM method needed } \\
\text { BLS12-381 with seed } u_{0}=-0 x d 201000000010000
\end{gathered}
$$

BLS12 curves, testing if $P \in \mathbb{G}_{1}$ for $P \in E\left(\mathbb{F}_{q}\right)$

Well-known GLV trick: write $r_{0}+r_{1} \lambda=0 \bmod r$ with λ the eigenvalue of $\phi \bmod r, \lambda=-u^{2}$.

$$
\underbrace{1}_{r_{0}}+(\underbrace{1-u^{2}}_{r_{1}}) \lambda=r=u^{4}-u^{2}+1
$$

Compute $P+\left[1-u^{2}\right] \phi(P)=? \mathcal{O}$

$$
\begin{aligned}
& P \in E\left(\mathbb{F}_{q}\right)[r] \Longrightarrow \phi(P)=[\lambda] P \\
& \phi(P)=[\lambda] P \nRightarrow P \in E\left(\mathbb{F}_{q}\right)[r]
\end{aligned}
$$

\mathbb{G}_{2} technicalities

\mathbb{G}_{2} is more tricky and the endomorphism is ψ, of characteristic polynomial

$$
X^{2}-t X+q
$$

where t is the trace of E over \mathbb{F}_{q}.
GLV on $\mathbb{G}_{1} \rightarrow$ GLS (Galbraith Lin Scott) on \mathbb{G}_{2}
A point $Q \in E^{\prime}\left(\mathbb{F}_{q^{i}}\right)$ has some eigenvalue μ under ψ is a consequence of Q having order r

- Michael Scott.

A note on group membership tests for G1, G2 and GT on BLS pairing-friendly curves. ePrint, https://eprint.iacr.org/2021/1130.pdf.

- $\phi(P)=[\lambda] P \Longleftrightarrow P \in \mathbb{G}_{1}$ (proof by contradition)
- $\psi(Q)=[\mu] Q \Longleftrightarrow P \in \mathbb{G}_{2}$ (proof incorrect)

Outline

(1) Motivation
(2) Faster co-factor clearing
(3) GLV on elliptic curves

4 Subgroup membership testing with GLV
(5) Ensuring correct subgroup membership testing in \mathbb{G}_{1} and \mathbb{G}_{2}

General criterion

Let $\tilde{E}\left(\mathbb{F}_{\tilde{q}}\right)$ be a family of elliptic curves (i.e. it can be $E\left(\mathbb{F}_{q}\right)$ or $E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)$ for instance). Let \mathbb{G} be a cryptographic group of \tilde{E} of order r equipped with an efficient endomorphism $\tilde{\phi}$. It has a minimal polynomial $\tilde{\chi}$ and an eigenvalue $\tilde{\lambda}$. Let c be the cofactor of \mathbb{G}.

Proposition

If $\tilde{\phi}$ acts as the multiplication by $\tilde{\lambda}$ on $\tilde{E}\left(\mathbb{F}_{\tilde{q}}\right)[r]$ and $\operatorname{gcd}(\tilde{\chi}(\tilde{\lambda}), c)=1$ then

$$
\tilde{\phi}(Q)=[\tilde{\lambda}] Q \Longleftrightarrow Q \in \tilde{E}\left(\mathbb{F}_{\tilde{q}}\right)[r] .
$$

Example (Barreto-Naehrig family)

Let $E\left(\mathbb{F}_{q(x)}\right)$ define the BN pairing-friendly family. It is parameterized by

$$
q(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1 ; r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 ; t(x)=6 x^{2}+1
$$

and $E\left(\mathbb{F}_{q(x)}\right)$ has a prime order so $c_{1}=1$. The cofactor on the sextic twist $E^{\prime}\left(\mathbb{F}_{q^{2}}\right)$ is $c=c_{2}$

$$
c_{2}(x)=q(x)-1+t(x)=36 x^{4}+36 x^{3}+30 x^{2}+6 x+1 .
$$

On $\mathbb{G}=\mathbb{G}_{2}=E^{\prime}\left(\mathbb{F}_{q^{2}}\right)[r], \tilde{\phi}=\psi$ has a minimal polynomial $\tilde{\chi}=\chi$ and an eigenvalue $\tilde{\lambda}=\lambda$

$$
\chi=X^{2}-t X+q ; \quad \lambda=6 X^{2} .
$$

Applying the proposition (and taking care of exceptional cases),

Proposition

For the $B N$ family, if $Q \in E^{\prime}\left(\mathbb{F}_{q^{2}}\right), \psi(Q)=[u] Q \Longrightarrow Q \in E^{\prime}\left(\mathbb{F}_{q^{2}}\right)[r]$.

Conclusion

- Many curve families have the \mathbb{G}_{1} cofactor of the form $c_{1}=3 \ell^{2}$. We show $P \mapsto[\ell] P$ is sufficient to clear the cofactor.
- For both \mathbb{G}_{1} and \mathbb{G}_{2}, we give a common criterion that shows it is sufficient to verify the endomorphism to test membership $\tilde{\phi}(P)=\tilde{\lambda} P \Longleftrightarrow P \in \mathbb{G}$
- Open-source implementation for different curves (BN, BLS12, BLS24) is available at https://github.com/ConsenSys/gnark-crypto

