Optimized and secure pairing-friendly elliptic curve suitable for one layer proof composition

Youssef El Housni¹ Aurore Guillevic²

¹Ernst & Young, Inria and École polytechnique, Paris, France

²Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

CANS 2020

Y. El Housni, A. Guillevic CANS 2020

Overview

- Preliminaries
 - Zero-knowledge proof
 - ZK-SNARK
- Proof composition
 - Notations
 - Techniques
- Our work
 - Theory
 - Implementation
- 4 Applications

Y. El Housni, A. Guillevic

Zero-knowledge proof

What is a zero-knowledge proof?

"I have a *sound*, *complete* and *zero-knowledge* proof that a statement is true".

Sound

False statement \implies cheating prover cannot convince honest verifier.

Complete

True statement \implies honest prover convinces honest verifier.

Zero-knowledge

True statement \implies verifier learns nothing other than statement is true.

Y. El Housni, A. Guillevic CANS 2020

Zero-knowledge proof

ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof that a statement is true and that I know a related secret".

Succinct

Honestly-generated proof is very "short" and "easy" to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge

Honest verifier is convinced that a comptutationally bounded prover knows a secret information.

Y. El Housni, A. Guillevic CANS 2020

Zero-knowledge proof

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

ZK-SNARK

Succinctness: An honestly-generated proof is very "short" and "easy" to verify.

Definition [BCTV14b]

A succinct proof π has size $O_{\lambda}(1)$ and can be verified in time $O_{\lambda}(|F|+|x|+|z|)$, where $O_{\lambda}(.)$ is some polynomial in the security parameter λ .

Y. El Housni, A. Guillevic CANS 2020

Notations

Pairing-based zkSNARK

- $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.
- r prime divisor of $\#E(\mathbb{F}_q) = q+1-t$, t Frobenius trace.
- -D CM discriminant, $4q = t^2 + Dy^2$ for some integer y.
- d degree of twist.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- ullet $\mathbb{G}_1\subset E(\mathbb{F}_q)$ and $\mathbb{G}_2\subset E(\mathbb{F}_{q^k})$ two groups of order r.
- $\mathbb{G}_T \subset \mathbb{F}_{q^k}^*$ group of *r*-th roots of unity.
- pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$.

Proof composition A proof

Example: Groth16 [Gro16]

Given an instance $\Phi = (a_0, \dots, a_\ell) \in \mathbb{F}_r^\ell$ of a public NP program F

• $(pk, vk) \leftarrow S(F, \tau, 1^{\lambda})$ where

$$\textit{vk} = (\textit{vk}_{\alpha,\beta}, \{\textit{vk}_{\pi_i}\}_{i=0}^{\ell}, \textit{vk}_{\gamma}, \textit{vk}_{\delta}) \in \mathbb{G}_{\textit{T}} \times \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2 \times \mathbb{G}_2$$

• $\pi \leftarrow P(\Phi, w, pk)$ where

$$\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \qquad (O_{\lambda}(1))$$

• $0/1 \leftarrow V(\Phi, \pi, vk)$ where V is

$$e(A,B) = vk_{\alpha,\beta} \cdot e(vk_x, vk_\gamma) \cdot e(C, vk_\delta) \qquad (O_\lambda(|\Phi|)) \qquad (1)$$

8 / 24

and $vk_{\times} = \sum_{i=0}^{\ell} [a_i]vk_{\pi_i}$ depends only on the instance Φ and $vk_{\alpha,\beta} = e(vk_{\alpha}, vk_{\beta})$ can be computed in the trusted setup for $(vk_{\alpha}, vk_{\beta}) \in \mathbb{G}_1 \times \mathbb{G}_2$.

Blockchains and ZK-SNARKs

A blockchain is a decentralized, transparent, immutable, paying ledger.

- *Transparent*: everything is visible to everyone
- Immutable: nothing can be removed once written
- Paying: everyone should pay a fee to use

$$\begin{array}{ccc} \text{Transparent} & \xrightarrow{\text{Problem}} & \text{confidentiality} & \xrightarrow{\text{Solution}} & \text{ZK-SNARK} \\ & & & \pi & \text{is zero-knowledge} \\ & & & \text{Immutable} & \xrightarrow{\text{Problem}} & \text{scalability} & & & \text{ZK-SNARK} \\ & & & & \pi & \text{is } O_{\lambda}(1) \\ & & & \text{Paying} & \xrightarrow{\text{Problem}} & \text{cost} & & & \text{ZK-SNARK} \\ & & & & V & \text{is } O_{\lambda}(|\Phi|) \end{array}$$

Example: On Ethereum blockchain ($\lambda \approx 110$ -bit), $\pi_{\tt Groth16}$ is 254 bytes and $V_{\tt Groth16}$ costs ($200k + 8k/{\sf input}$) \times gas $\approx 0.37 {\sf eur} + \ldots$

Blockchains and ZK-SNARKs

Question: How much does it cost in space and fees to verify 1000 proofs?

Answer: 254000 bytes and > 370 euros !

Question: Can we aggregate 1000 proofs into a single constant-size proof? Can we verify 1000 proofs at the cost of 1 proof? Can we do both?

Answer: Since the verification algorithm V (Eq. 1) is an NP program, generate a new proof that verifies the correctness of the previous 1000 proofs.

- Scenario 1: The number of proofs to aggregate is not fixed and you need to aggregate on the fly
- Scenario 2: The number of proofs to aggregate is fixed and you need to aggregate only once

10 / 24

Y. El Housni, A. Guillevic CANS 2020

A proof of a proof

How easy/difficult is to express V (Eq. 1) as an instance Φ of a NP program in C ?

Remember that V (Eq. 1) lies in \mathbb{F}_{q^k} and C in \mathbb{F}_r , where q is the field size of an elliptic curve E and r its prime subgroup order.

- 1st attempt: choose a curve for which q = r (impossible)
- 2^{nd} attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations ($\times \log q$ blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [BCTV14a, BCG⁺20]

Y. El Housni, A. Guillevic CANS 2020

cycles and chains of pairing-friendly elliptic curves

Definition

An *m*-chain of elliptic curves is a list of distinct curves

$$E_1/\mathbb{F}_{q_1},\ldots,E_m/\mathbb{F}_{q_m}$$

where q_1, \ldots, q_m are large primes and

$$\#E_2(\mathbb{F}_{q_2}) = q_1, \ldots, \ \#E_i(\mathbb{F}_{q_i}) = q_{i-1}, \ldots, \ \#E_m(\mathbb{F}_{q_m}) = q_{m-1} \ .$$
 (2)

Definition

An m-cycle of elliptic curves is an m-chain, with

$$\#E_1(\mathbb{F}_{q_1}) = q_m . \tag{3}$$

12 / 24

Y. El Housni, A. Guillevic CANS 2020

cycles and chains of pairing-friendly elliptic curves

Y. El Housni, A. Guillevic CANS 2020

cycles and chains of pairing-friendly elliptic curves

E/\mathbb{F}_q	q	r	k	d	a, b	λ
MNT4	$q_4 = r_6 \ (298b)$	$r_4 = q_6 \ (298b)$	4	2	a = 2, b = *	77
MNT6	$q_6 = r_4 (298b)$	$r_6 = q_4 \ (298b)$	6	2	a = 11, b = *	87
MNT4-753	$q_4' = r_6' \text{ (753b)}$	$r_4' = q_6' \ (753b)$	4	2	a = 2, b = *	113
MNT6-753	$q_6' = r_4' \text{ (753b)}$	$r_6' = q_4' \ (753b)$	6	2	a = 11, b = *	137
BLS12-377	q _{BLS} (377b)	r _{BLS} (253b)	12	6	a = 0, b = 1	125
CP6	q _{CP6} (782b)	$r_{\rm CP6} = q_{\rm BLS} (377b)$	6	2	a = 5, b = *	138
This work	q (761b)	$r = q_{\rm BLS} \ (377b)$	6	6	a = 0, b = -1	126

Table: 2-cycle and 2-chain examples.

Recall that E/\mathbb{F}_q : $y^2=x^3+ax+b$ has a subgroup of order r, an embedding degree k, a twist of order d and an approximate security of λ -bit.

Y. El Housni, A. Guillevic CANS 2020

ZK-curves

- SNARK
 - E/\mathbb{F}_q
 - pairing-friendly
 - r-1 highly 2-adic
- Recursive SNARK (2-cycle)
 - ullet E_1/\mathbb{F}_{q_1} and E_2/\mathbb{F}_{q_2}
 - both pairing-friendly
 - $r_2 = q_1$ and $r_1 = q_2$
 - $r_{\{1,2\}}-1$ highly 2-adic
 - $q_{\{1,2\}} 1$ highly 2-adic
- Recursive SNARK (2-chain)
 - E_1/\mathbb{F}_{q_1}
 - pairing-friendly
 - $r_1 1$ highly 2-adic
 - $q_1 1$ highly 2-adic
 - E_2/\mathbb{F}_{q_2}
 - pairing-friendly
 - $r_2 = q_1$

BN, BLS12, BW12?, KSS16? ... [FST10]

MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

BLS12 (seed $\equiv 1 \mod 3 \cdot 2^{adicity}$) [BCG⁺20], ?

Cocks-Pinch algorithm

Snarky curve E_2/\mathbb{F}_{q_2}

- q is a prime or a prime power
- t is relatively prime to q

```
 \begin{array}{l} \bullet \ r \ \text{is prime} \\ \bullet \ r \ \text{divides} \ q+1-t \\ \bullet \ r \ \text{divides} \ q^k-1 \ \text{(smallest} \ k \in \mathbb{N}^* ) \end{array} \right) \ r \ \text{is a } \ \textbf{fixed} \ \text{chosen prime} \\ \text{that divides} \ q+1-t \\ \text{and} \ q^k-1 \ \text{(smallest} \ k \in \mathbb{N}^* ) \end{array}
```

• $4q - t^2 = Dy^2$ (for $D < 10^{12}$) and some integer y

Algorithm 1: Cocks-Pinch method

- 1 Fix k and D and choose a prime r s.t. k|r-1 and $(\frac{-D}{r})=1$;
- 2 Compute $t = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$;
- 3 Compute $y = (t-2)/\sqrt{-D} \mod r$;
- 4 Lift t and y in \mathbb{Z} ;
- 5 Compute $q = (t^2 + Dy^2)/4$ (in \mathbb{Q});
- 6 back to 1 if q is not a prime integer;

Limitations and improvements over CP

- $\rho = \log_2 q / \log_2 r \approx 2$ (because $q = f(t^2, y^2)$ and $t, y \xleftarrow{\$} \operatorname{mod} r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm 2: Brezing-Weng method

- 1 Fix k and D and choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient 1 s.t. $\sqrt{-D}$ and the primitive k-th root of unity ζ_k are in $K = \mathbb{Q}[x]/r(x)$;
- 2 Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_k + 1$ in K;
- 3 Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in K;
- 4 Compute $q(x) = (t^2(x) + Dy^2(x))/4$ in $\mathbb{Q}[x]$;

 - r(x), q(x), t(x) but does $\exists x_0 \in \mathbb{Z}^*, r(x_0) = r_{\text{fixed}}$ and $q(x_0)$ is prime ?

Y. El Housni, A. Guillevic CANS 2020

¹conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces infinitely many primes for infinitely many integers.

Notes

- $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k}) \cong E'[r](\mathbb{F}_{q^{k/d}})$ for a twist E' of degree d.
- When -D = -3, there exists a twist E' of degree d = 6.
- Associated with a choice of $\xi \in \mathbb{F}_{q^{k/6}}$ s.t. $x^6 \xi \in \mathbb{F}_{q^{k/6}}[x]$ is irreducible, the equation of E' can be either
 - $y^2 = x^3 + b/\xi$ and we call it a D-twist or
 - $y^2 = x^3 + b \cdot \xi$ and we call it a M-twist.
- ullet For the D-type, $E' o E:(x,y)\mapsto (\xi^{1/3}x,\xi^{1/2}y)$,
- ullet For the M-type $E' o E:(x,y)\mapsto (\xi^{2/3}x/\xi,\xi^{1/2}y/\xi)$

Y. El Housni, A. Guillevic CANS 2020

Suggested construction: combines CP and BW

- Cocks-Pinch method
 - k=6 and $-D=-3 \Longrightarrow 128$ -bit security, \mathbb{G}_2 coordinates in \mathbb{F}_q , GLV multiplication over \mathbb{G}_1 and \mathbb{G}_2
 - restrict search to size(q) \leq 768 bits \implies smallest machine-word size
- Ø Brezing-Weng method
 - choose $r(x) = q_{\text{BLS } 12-377}(x)$
 - $q(x) = (t^2(x) + 3y^2(x))/4$ factors $\implies q(x_0)$ cannot be prime
 - lift $t = r \times h_t + t(x_0)$ and $y = r \times h_y + y(x_0)$ [FK19, GMT20]

Y. El Housni, A. Guillevic CANS 2020

The suggested curve: BW6-761

We found the following curve $E: y^2 = x^3 - 1$ over \mathbb{F}_q of 761-bit. The parameters are expressed in polynomial forms and evaluated at the seed $x_0 = 0x8508c00000000$. For pairing computation we use the M-twist curve $E': y^2 = x^3 + 4$ over \mathbb{F}_q to represent \mathbb{G}_2 coordinates.

Our curve,
$$k = 6$$
, $D = 3$, $r = q_{\text{BLS}\,12-377}$

$$r(x) = (x^6 - 2x^5 + 2x^3 + x + 1)/3 = q_{\text{BLS}\,12-377}(x)$$

$$t(x) = x^5 - 3x^4 + 3x^3 - x + 3 + h_t r(x)$$

$$y(x) = (x^5 - 3x^4 + 3x^3 - x + 3)/3 + h_y r(x)$$

$$q(x) = (t^2 + 3y^2)/4$$

$$q_{h_t=13,h_y=9}(x) = (103x^{12} - 379x^{11} + 250x^{10} + 691x^9 - 911x^8 - 79x^7 + 623x^6 - 640x^5 + 274x^4 + 763x^3 + 73x^2 + 254x + 229)/9$$

Y. El Housni, A. Guillevic CANS 2020

Features

- The curve is over 761-bit instead of 782-bit, we save one machine-word of 64 bits.
- The curve has an embedding degree k=6 and a twist of order d=6, allowing \mathbb{G}_2 coordinates to be in \mathbb{F}_q (factor 6 compression).
- The curve parameters have polynomial expressions, allowing fast implementation.
- The curve has a very efficient optimal ate pairing.
- The curve has CM discriminant -D=-3, allowing fast GLV multiplication on both \mathbb{G}_1 and \mathbb{G}_2 .
- The curve has fast subgroup checks and fast cofactor multiplication on \mathbb{G}_1 and \mathbb{G}_2 via endomorphisms.
- The curve has fast and secure hash-to-curve methods for both \mathbb{G}_1 and \mathbb{G}_2 .

21 / 24

Y. El Housni, A. Guillevic CANS 2020

Cost estimation of a pairing

$$e(P,Q) = f_{t-1,Q}(P)^{(q^6-1)/r}$$
 $(t-1)$ of 388 bits, $Q \in \mathbb{F}_{q^3}$ $e(P,Q) = (f_{x_0+1,Q}(P)f_{x_0^3-x_0^2-x_0,Q}^q(P))^{(q^6-1)/r}$ x_0 of 64 bits, $Q \in \mathbb{F}_q$

$$(q^6-1)/r = \underbrace{(q^3-1)(q+1)}_{\text{easy part}} \underbrace{(q^2-q+1)/r}_{\text{hard part}} = \left\{ \begin{array}{l} \text{easy part} \times (w_0+qw_1) \\ \text{easy part} \times f(x_0,q^i) \end{array} \right.$$

Curve	Prime	Pairing	Miller loop	Exponentiation	Total
BLS12	377-bit	ate	6705 m ₃₈₄	7063 m ₃₈₄	13768 m ₃₈₄
CP6	782-bit	ate	47298 m ₈₃₂	10521 m ₈₃₂	57819 m ₈₃₂
This	761-bit	opt. ate	7911 m ₇₆₈	5081 m ₇₆₈	12992 m ₇₆₈

 m_b base field multiplication, b bitsize in Montgomery domain on a 64-bit platform

x4.5 less operations in a smaller field by one machine-word

Y. El Housni, A. Guillevic CANS 2020

Rust implementation timings

Implemented in ZEXE Rust library [SL20] and tested on a 2.2 GHz Intel Core i7 x86_64 processor with 16 Go 2400 MHz DDR4 memory running macOS Mojave 10.14.6. Rust compiler is Cargo 1.43.0.

Pull request url: https://github.com/scipr-lab/zexe/pull/210

Curve	Pairing	Miller loop	Exponentiation	Total	Eq. 1
BLS12	ate	0.7ms	1.3ms	2ms	3.4ms
CP6-782	ate (ZEXE)	76.1ms	8.1ms	84.2ms	309.4ms
Our curve	opt. ate	2.5ms	3ms	5.5ms	10.5ms

x15 faster to compute a pairing x29 faster to verify a Groth16 proof

N.B.: Affine pairing on CP6-761 can be optimized by implementing faster inverse in F_{a^3}

Y. El Housni, A. Guillevic CANS 2020

Applications

Industrial blockchain projects

- Aleo: private applications (https://aleo.org/)
 - already in use: https://developer.aleo.org/autogen/advanced/ the_aleo_curves/overview
- Celo: batched verification of BLS signatures (https://celo.org/)
 - already in use: https://github.com/celo-org/celo-bls-snark-rs
- Clearmatics Zecale: general purpose zk-SNARK aggregator (https://www.clearmatics.com)
 - already in use: https://github.com/clearmatics/zecale
- EY Midnight ZVM™: private smart contracts on Ethereum
 - to be released soon

Y. El Housni, A. Guillevic CANS 2020

References I

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves.

In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014*, *Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

Y. El Housni, A. Guillevic CANS 2020

References II

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann architecture.

In Kevin Fu and Jaeyeon Jung, editors, *USENIX Security 2014*, pages 781–796. USENIX Association, August 2014.

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.

On cycles of pairing-friendly elliptic curves.

SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

Youssef El Housni and Aurore Guillevic.

Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition.

Cryptology ePrint Archive, Report 2020/351, 2020. https://eprint.iacr.org/2020/351.

Y. El Housni, A. Guillevic CANS 2020

References III

Georgios Fotiadis and Elisavet Konstantinou.

TNFS resistant families of pairing-friendly elliptic curves.

Theoretical Computer Science, 800:73-89, 31 December 2019.

David Freeman, Michael Scott, and Edlyn Teske.

A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology, 23(2):224-280, April 2010.

Aurore Guillevic, Simon Masson, and Emmanuel Thomé.

Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation.

Des. Codes Cryptogr., pages 1–35, March 2020.

Y. El Housni, A. Guillevic CANS 2020

References IV

Jens Groth.

On the size of pairing-based non-interactive arguments.

In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

Izaak Meckler and Evan Shapiro.

Coda: Decentralized cryptocurrency at scale.

O(1) Labs whitepaper, 2018.

https://cdn.codaprotocol.com/v2/static/ coda-whitepaper-05-10-2018-0.pdf.

scipr lab.

libff: C++ library for finite fields and elliptic curves., 2018.

https://github.com/scipr-lab/libff.

Y. El Housni, A. Guillevic **CANS 2020**

References V

SCIPR-LAB.

Zexe (zero knowledge execution), 2020.

https://github.com/scipr-lab/zexe.

Y. El Housni, A. Guillevic CANS 2020