Faster Montgomery multiplication and Multi-Scalar-Multiplication for SNARKs

Gautam Botrel and Youssef El Housni Consensys - Linea

Faster Montgomery multiplication and Multi-Scalar-Multiplication for SNARKs

Gautam Botrel and Youssef El Housni Consensys - Linea

Agenda

01 SNARKs
O2 Multi-Scalar-Multiplication
O3 Faster Montgomery multiplication

Lineå

SNARK

Succinct Non-Interactive ARgument of Knowledge

"I have a sound, complete and zero-knowledge proof that a statement is true". [GMR85]

- Sound

False statement \Rightarrow cheating prover cannot convince honest verifier.

- Complete

True statement \Rightarrow honest prover convinces honest verifier.

- Zero-knowledge

True statement \Rightarrow verifier learns nothing other than statement is true. 1
"I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof that a statement is true and that I know a related secret".

- Succinct

A proof is very "short" and "easy" to verify.

- Non-interactive

No interaction between the prover and verifier for proof generation and verification (except the proof message).

- ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

Lineå

(zk) SNARK

F: public NP program,
x, z: public inputs,
w: private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

- Setup : $(\mathrm{pk}, \mathrm{vk}) \leftarrow \mathrm{S}(\mathrm{F}, \lambda)$
- Prove : $\pi \leftarrow P(x, z, w, p k)$
- Verify : false/true $\leftarrow \mathrm{V}(\mathrm{x}, \mathrm{z}, \pi, \mathrm{vk})$

SNARK

Pairing-friendly elliptic curves

- $\quad E: y^{\wedge} 2=x^{\wedge} 3+a x+b$ elliptic curve defined over Fq, q a prime.
- $\quad \mathrm{r}$ prime divisor of $\# \mathrm{E}(\mathrm{Fq})=\mathrm{q}+1-\mathrm{t}$,
- t Frobenius trace.
- small embedding degree k : smallest integer $k \in N$ s.t. $r \mid q^{\wedge}(k-1)$.
- $\quad \mathrm{G} 1 \subset \mathrm{E}(\mathrm{Fq})$ and $\mathrm{G} 2 \subset \mathrm{E}(\mathrm{Fq} \wedge \mathrm{k})$ two groups of order r.
- GT $\subset F q^{\wedge} k$ group of r-th roots of unity.
- pairing e: G1 $\times \mathrm{G} 2 \rightarrow \mathrm{GT}$.

Curves of interest:

$$
y^{\wedge} 2=x^{\wedge} 3+1
$$

SNARK

Table: Cost of S, P and V algorithms for Groth16 and Universal. $n=$ number of multiplication gates, $a=$ number of addition gates and $\ell=$ number of public inputs. $M_{\mathbb{G}}=$ multiplication in \mathbb{G} and $\mathrm{P}=$ pairing.

	Setup	Prove	Verify
Groth16	$3 n \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$(4 n-\ell) \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$3 \mathrm{P}, \ell \mathrm{M}_{\mathbb{G}_{1}}$
Universal	$d_{\geq n+a} \mathrm{M}_{\mathbb{G}_{1}}, 1 \mathrm{M}_{\mathbb{G}_{2}}$	$9(n+a) \mathrm{M}_{\mathbb{G}_{1}}$	$2 \mathrm{P}, 18 \mathrm{M}_{\mathbb{G}_{1}}$
(PLONK-KZG)			

Multi-Scalar-Multiplication

$$
\mathrm{S}=[\mathrm{a} 1] \mathrm{P} 1+[\mathrm{a} 2] \mathrm{P} 2+\cdots+[\mathrm{an}] \mathrm{Pn} \text { with } \mathrm{Pi} \in \mathrm{G} 1(\text { or } \mathrm{G} 2) \text { and ai } \in \mathrm{Fr}(|\mathrm{r}|=\mathrm{b}-\mathrm{bit})
$$

- Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed $\mathrm{c} \leq \mathrm{b}$
- Step 2: solve each c-bit MSM efficiently
- Step 3: combine the c-bit MSMs into the final b-bit MSM

Multi-Scalar-Multiplication

$\mathrm{S}=[\mathrm{a} 1] \mathrm{P} 1+[\mathrm{a} 2] \mathrm{P} 2+\cdots+[\mathrm{an}] \mathrm{Pn}$ with $\mathrm{Pi} \in \mathrm{G} 1($ or G 2$)$ and ai $\in \mathrm{Fr}(|\mathrm{r}|=\mathrm{b}-\mathrm{bit})$

- Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed $\mathrm{c} \leq \mathrm{b}$
- Step 2: solve each c-bit MSM efficiently
- Step 3: combine the c-bit MSMs into the final b-bit MSM

Overall cost is: $\mathrm{b} / \mathrm{c}\left(\mathrm{n}+\mathbf{2}^{\wedge} \mathrm{c}\right)+(\mathrm{b}-\mathrm{c}-\mathrm{b} / \mathrm{c}-1)$

- Mixed re-additions: to accumulate Pi in the c-bit MSM buckets with cost b/c(n-2^c+1)
- Additions: to combine the bucket sums with cost b/c(2^c-3)
- Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost b-c+b/c-1
- b/c-1 additions and
- b-c doublings

Multi-Scalar-Multiplication

- Curves of interest have always a twisted Edwards form $-y^{\wedge} 2+x^{\wedge} 2=1+d x^{\wedge} 2 y^{\wedge} 2$
- We introduce a custom coordinates system ($y-x: y+x: 2 d x y$) \rightarrow (7m per addition)
- We use 2-NAF buckets, Parallelism, software optimizations...

40-47\% speedup compared to artworks (Rust)

Figure 4: Comparison of our MSM code and the arkworks one for different instances on the BLS12-377 \mathbb{G}_{1} group on the x86 AWS machine.

Figure 3: Comparison of our MSM code and the arkworks one for different instances on the BLS12-377 \mathbb{G}_{1} group on the Samsung Galaxy A13.

Faster Montgomery multiplication

Given integers a, b and q the modular multiplication problem is to compute the remainder of the product
$a \times b \bmod q$

- SNARKs invoke modular multiplication billions of times in a single execution.
- Other protocols (such as ECDSA or ECDH) are themselves invoked billions of times each second around the world.

In both cases, even a tiny improvement in modular multiplication yields a very significant computational saving-every nanosecond counts.

Faster Montgomery multiplication

Modular multiplication without division

- Do not compute ab mod q
- Instead compute ab/R mod q for some carefully chosen number R
- For example, if $|\mathrm{p}|=381$ bits, $\mathrm{R}=2^{\wedge}(6 \times 64)=2^{\wedge} 384$ (on a 64-bit architecture)
- Store a and b in the Montgomery form:

$$
\begin{aligned}
& a^{\prime}=a R \bmod q \\
& b^{\prime}=b R \bmod q
\end{aligned}
$$

- Multiplication is

$$
\begin{array}{r}
(a R)(b R) / R=a b R \bmod q \\
a^{\prime} b^{\prime} / R=(a b)^{\prime} \bmod q
\end{array}
$$

Faster Montgomery multiplication

CIOS variant

- \quad the number of machine words to store q
- D the word size e.g. 2^64
- $a^{\prime}[i], b^{\prime}[i], q[i]$ are the $i-t h$ words of a^{\prime}, b^{\prime} and q
- $q[0]$ is the lowest is lowest word of $1 / q \bmod R$
- $\quad \mathrm{t}$ an array of size $\mathrm{N}+2$
- C, S are machine words e.g. (C, S)=(high, low)

Cost: $\mathbf{4 N} \wedge \mathbf{2 + 4 N + 2}$ integer additions and $\mathbf{2 N} \mathbf{N} \mathbf{2 + N}$ integer multiplications

Faster Montgomery multiplication

Our optimization

Proposition 1.

If the highest word of p is at most $(D-1) / 2-1$, then the variables $t[N]$ and $t[N+1]$ always store the value 0 at the beginning of each iteration of the outer loop.

Cost: $4 \mathbf{N}^{\wedge} \mathbf{2}-\mathrm{N}$, a saving of $5 \mathrm{~N}+2$ additions.

This optimization can be used whenever the highest bit of the modulus is zero (and not all of the remaining bits are set).

Thank you

- Paper: https://tches.iacr.org/index.php/TCHES/article/view/10972/10279
- Code: https://github.com/gbotrel/zprize-mobile-harness
- Winner of the https://www.zprize.io/ mobile competition

