
1

Optimizing cryptographic
algorithms in gnark

Devcon Bogota 2022
Youssef El Housni

research.consensys.net

2

Who?

● Arya Pourtabatabaie
● Ivo Kubjas
● Youssef El Housni
● Thomas Piellard
● Gautam Botrel

Team

What?

We’re building gnark, a fast and easy to use open source
zkSNARK library, in Go.

and gnark-crypto, a fast cryptographic library, in Go.

https://github.com/consensys/gnark
https://github.com/consensys/gnark-crypto

3

Frontend
(write a “circuit”)

Backend
(proof generation &

verification)

Pairing and elliptic curve cryptography

Field arithmetic (~big integer library)

gnark-crypto

gnark-crypto

gnark under the hood

- 768-bit, 384-bit, 256-bit, goldilocks… on multi-targets
- FFT, Pornin’s optimized inverse…

- BN254, BLS12-381, BLS12-377/BW6-761, BLS24…
- Fast MSM, fast pairings
- KZG, FRI, Plookup…
- Sumcheck (GKR)

- Groth16, PLONK w/ KZG or FRI
- stdlib: MiMC, E(d/C)DSA, pairing, BLS sig., KZG…
- Native and non-native field arithmetic

4

gnark workflow

ccs, err = frontend.Compile(ecc.BN254.ScalarField(), r1cs.NewBuilder, &c)
ccs, err = frontend.Compile(ecc.BLS12_381.ScalarField(), scs.NewBuilder, &c)

pk, vk, err := groth16.Setup(ccs)

proof, err := groth16.Prove(ccs, pk, witness)

err := groth16.Verify(proof, vk, publicWitness)

55

gnark circuits: play.gnark.io

66

gnark circuit compiler: specialized circuit, ecosystem agnostic

gnark

+ No DSL, plain Go, no dependencies
+ Compiles large circuit (seconds)
+ Playground, constraints profiler, …
+ Write circuit once, use different curves and

backends
+ 2-chains, best-in-class 1-layer of recursion
+ Several packages audited (Algorand) and

fuzz-tested for months (geth)
+ One code base which performs well on:

+ Server (CPU)
+ Mobile (70% faster than zprize)
+ WASM (30% faster than zprize)

Constraints profiler

https://play.gnark.io

77

gnark is very fast

Groth16 SNARK prover on BN254: MSM, FFT, parallelism

AWS hpc6a (AMD EPYC)

88

gnark is very fast

Groth16 SNARK verifier: Pairing on BN254

AWS hpc6a (AMD EPYC)

99

Why is gnark that fast?

Example: 1-layer recursive Groth16 proof

1- Write a circuits C 2- Generate a proofs π of C

2.2- Perform field arithmetic

4- Generate a proof π’ of C’Frontend
(write a “circuit”)

Backend
(proof generation &

verification)

Pairing and elliptic curve cryptography

Field arithmetic (~big integer library)

gnark-crypto

gnark-crypto4.2- Perform field arithmetic

2.1- Compute FFTs and
MSMs over BLS12-377

4.1- Compute FFTs and
MSMs over BW6-761

5- Verify the proof

5.1- Compute pairings over
BW6-761

5.2- Perform field arithmetic

3- Write a circuit C’
of the verification
of π

1010

Why is gnark that fast?

2.1- Compute FFTs and MSMs over BLS12-377

● Speedup 40-47% (tEd-custom)

● Speedup 20-35% (SW-extJac)

https://github.com/gbotrel/zprize-mobile-harness/blob/main/msm.pdf

Samsung Galaxy A13 5G (SoC MediaTek Dimensity 700 (MT6833)).

https://www.devicespecifications.com/en/model/46da57d2
https://www.mediatek.com/products/smartphones-2/dimensity-700

1111

Why is gnark that fast?

b-bit MSM: a1 * G1 + · · · + an * Gn

- Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed c ≤ b
- Step 2: solve each c-bit MSM efficiently
- Step 3: combine the c-bit MSMs into the final b-bit MSM

→ Overall cost is: b/c*(n + 2^{c-1}) + (b − c − b/c − 1)

➢ Mixed re-additions: to accumulate Gi in the c-bit MSM buckets with cost b/c* (n − 2^{c-1} + 1)

➢ Additions: to combine the bucket sums with cost b/c*(2^c − 3)

➢ Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost b−c+b/c−1

○ b/c − 1 additions and

○ b − c doublings

+All inner BLS:

−x^2 +y^2 =1+(7+4√3)*x^2y^2

+Custom tEd extended coordinates

(X,Y,T)=(y-x, y+x, 2d*x*y)

+Parallelism, 2-NAF buckets…

1212

Why is gnark that fast?

3- Write a circuit C’ of the verification of π

Miller loop:

+ Affine coordinates → ≈ 19k (arkworks)

+ Division in extension fields

+ Double-and-Add in affine

+ lines evaluations (1/y, x/y)

+ Loop with short addition chains

+ Torus-based arithmetic

Final Exponentiation:

+ Karabina cyclotomic square

+ Torus-based arithmetic

+ Exp. with short addition chains https://eprint.iacr.org/2022/1162.pdf

1313

Why is gnark that fast?

5.1- Compute pairings over BW6-761

arkworks:

gnark:

integer bitsize Binary HW 2-NAF HW

u+1 64 7 7

u^3-u^2-u 190 136 31

(u-1)^2 127 15 12

1 pairing over BW6-761
AWS z1d.large (3.4 GHz Intel Xeon)

arkworks 1.71 ms

gnark 1.22 ms

https://eprint.iacr.org/2021/1359
https://hackmd.io/@gnark/BW6-761-changes

1414

Questions?

research.consensys.net

play.gnark.io
github.com/ConsenSys/gnark
github.com/ConsenSys/gnark-crypto

gnark@consensys.net
@gnark_team

mailto:gnark@consensys.net

