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Blockchains

How is a tx included in a block?

How is the longest chain agreed upon?
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Blockchains

How is a tx included in a block?

Signatures verification (Bitcoin: ECDSA/Schnorr, Ethereum: ECDSA/BLS)

How is the longest chain is agreed upon?

Consensus (Bitcoin: proof-of-work, Ethereum: proof-of-stake)
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Blockchains

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

?

Paying −−−−−→
Problem

cost −−−−−→
Solution

?
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Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.
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ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives
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Blockchains and ZKP

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

ZKP

setup, prover?, verifier?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

ZKP

Communication complexity

Paying −−−−−→
Problem

cost −−−−−→
Solution

ZKP

Verifier complexity , prover?
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ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [Kil92]

Succinct Non-Interactive ZKP [Mic94]

Pairing-based succinct NIZK [Gro10]

“SNARK” terminology and characterization of existence [BCCT12]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Gro16]

SNARK with universal and updatable setup [GKM+18, MBKM19, GWC19, CHM+20]

SNARK on small fields [plonky, circle-STARK, vortex, ...]
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zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof
that a statement is true and that I know a related secret”.

Succinct

A proof is very “short” and “easy” to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification (except the
proof message).

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.
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Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone (once offchain)
(pk, vk)← S(F , 1λ)

Prover (offchain) Anyone (onchain)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π
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zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.
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A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C ) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai ]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.
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Applications

Privacy: Monero, zcash, Aleo... or Tornado cash...

Scalability: Mina... or Linea, Aztec...
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Monero and Zcash

Layer-1 blockchains with privacy by design.

Use ZK proofs to hide transaction data (sender/receiver/amount).
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Tornado Cash

A privacy application on Ethereum (not a base layer).

Uses ZK proofs to break the link between deposits and withdrawals.
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Aleo (ZEXE)

Uses ZK proofs to hide program executions and state updates.

ZEXE enables private computations with verifiable correctness.
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Mina

ZK proofs for scalability.

Fixed-size blockchain via recursive proofs.
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Linea and Aztec

Layer-2 systems using ZK proofs to scale Ethereum.

Validity proofs compress many transactions into one.
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Ethproofs

Real-time Ethereum L1 proving.
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Proof composition

proof π

proof π1 proof π2 · · · proof πn

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V
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Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Scalar multiplications in SN(T)ARKs [LatinCrypt 2025]

Implementations: gnark, linea, arkworks, sonobe, ...
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https://play.gnark.io
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Thank you

website: https://yelhousni.github.io or https://yelhousni.eth.limo

email: youssef.elhousni@consensys.net

telegram: @ElMarroqui

x: @YoussefElHoun3

github: @yelhousni
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