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Résumé en Francais

La grande majorité des services numériques proposés aujourd’hui sont fournis par des
systémes centralisés, qui concentrent ’autorité et les capacités entre les mains de quelques
privilégiés. Si cette centralisation réduit la complexité de mise en ceuvre et augmente
efficacité, elle s’accompagne d’une résistance a la censure et d’'un manque de transparence.
Au cours des derniéres années, les systémes décentralisés, tels que les blockchains et les
registres distribués, ont suscité un intérét croissant. En simples termes, un registre distribué
peut étre considéré comme une méthode qui préserve les données dans une base de données
distribuée tout en garantissant que toutes les parties honnétes ont la méme vue des données,
méme en présence de parties corrompues. La définition la plus élémentaire d’une blockchain
est un registre numérique distribué qui enregistre de maniére vérifiable les transactions
entre plusieurs parties. En permettant aux utilisateurs de conserver une copie du registre
et en synchronisant toutes les copies a ’aide d’'un mécanisme de consensus, elle élimine le
besoin de vérification par une autorité centrale.

Toutefois, ces avantages se font souvent au détriment de deux propriétés essentielles :
la confidentialité et la mise a 1’échelle. Pour garantir ’exactitude des calculs, les systémes
de registres décentralisés existants exigent que les parties publient I'intégralité de leur état
de calcul, qui est ensuite vérifié par les autres parties qui doivent ré-exécuter le calcul. Du
point de vue de la confidentialité, cela révéle le calcul, les données d’entrée et 'identité des
parties. Du point de vue de la mise a I’échelle, cela signifie que le cotit des calculs cotiteux
est supporté par chaque partie du systéme, et non par la seule partie qui invoque le calcul.
Il convient de noter que, outre les blockchains, ces préoccupations sont pertinentes pour
tout systéme qui doit fournir une preuve de calcul correct tout en préservant la vie privée,
par exemple une entreprise fournissant des données a un cabinet d’audit.

Pour résoudre ce dilemme, les systémes de preuve a divulgation nulle de connaissance
se sont révélés étre une solution clé. Un systéme de preuve est un protocole interactif dans
lequel une partie (appelée le prouveur) essaie de convaincre une autre partie (appelée le
vérifieur) qu’un énoncé donné est vrai. Dans une preuve a divulgation nulle de connaissance,
nous exigeons en outre que la preuve ne révéle rien d’autre que la vérité de 1’énoncé. Une
preuve est non-interactive si aucune communication n’est requise entre le prouveur et le
vérifieur, sauf pour ’envoi de la preuve. Dans la classe des preuves non interactives, un
concept particuliérement intéressant pour prouver l'intégrité de calcul est le “Succinct Non-
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interactive ARgument of Knowledge” (SNARK). Il fournit une preuve calculatoirement
consistante, peu cotiteuse a vérifier et petite de taille par rapport a la taille de I’énoncé ou
du témoin. Au lieu de publier un calcul cotiteux sur la blockchain, une partie publie une
preuve SNARK a divulgation nulle de connaissance de I’exécution correcte de ce calcul.
Cela résout a la fois le probléme de la confidentialité et celui de la mise a 1’échelle.

Les SNARKSs basés sur le couplage bilinéaire sont les systémes de preuve les plus
efficaces en ce qui concerne la propriété de succinctivité. En outre, cette propriété en fait
de bons candidats pour la composition de preuves récursives. Une preuve récursive est
une preuve faite par un prouveur qui convainc un vérifieur que d’autres preuves faites par
d’autres prouveurs ont été correctement vérifiées par le prouveur. Cela permettrait a une
seule preuve d’attester inductivement de 'exactitude de nombreuses preuves antérieures,
ce qui aiderait les blockchains encore plus pour la mise a 1’échelle.

Dans cette these, nous étudions I'arithmétique des systémes de preuves récursives basés
sur le couplage bilinéaire. Nous présentons une étude a trois étapes du processus : les
courbes pour instancier un SNARK, les courbes pour instancier un SNARK récursif, et
aussi les courbes pour exprimer un énonceé lié & une courbe elliptique. Nous fournissons de
nouvelles constructions de courbes pour les SNARKS et de nouvelles familles de courbes
a 2 chaines pour les SNARKSs récursifs. Nous dérivons et implémentons en open-source
des algorithmes efficaces pour accélérer I'arithmétique sur ces courbes : effacement de
cofacteur, test d’appartenance a un sous-groupe, multiplication multi-scalaire et couplages
bilinéaires sur les 2-chaines. Nous étudions et optimisons également 'arithmétique des
courbes elliptiques et les couplages bilinéaires en tant qu’énoncé SNARK, ce qui permet
la génération de preuves récursives la plus rapide.
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Motivation and outline

The vast majority of digital services offered today are delivered through centralized
systems, which concentrate authority and ability in the hands of a select few. While this
centralization reduces implementation complexity and increases effectiveness, it comes with
censorship resistance and lack of transparency. Over the past several years there have been
an increasing interest in decentralized systems, such as blockchains and distributed ledgers.
In the simplest terms, a distributed ledger can be thought of as a method that preserves
data across a distributed database while guaranteeing that all honest parties have the
same view of the data, even in the presence of corrupt parties. The most basic definition of
a blockchain is a digitally distributed ledger that verifiably records transactions between
many parties. By enabling users to keep a copy of the ledger and syncing all copies using
a consensus mechanism, it eliminates the need for verification by a central authority.

However, these benefits often come at the expense of two key properties: privacy and
scalability. To ensure the correctness of computations, existing decentralized ledger systems
require that parties publish their entire computational state, which is then checked by
the other parties who have to re-execute the computation. From the privacy perspective,
this reveals the computation, the input data and the identities of the parties. From the
scalability perspective, this means that the cost of expensive computations is carried by
every party in the system, as opposed to just the party invoking the computation. Note
that, besides blockchains, these concerns are relevant to any system which has to provide
a proof of correct computation while preserving privacy, for instance a company providing
data to an audit firm.

To address this dilemma zero-knowledge proof systems have shown to be a key solution.
A proof system is an interactive protocol where one party (called the prover) tries to con-
vince another party (called the verifier) that a given statement is true. In a zero-knowledge
proof, we further require that the proof does not reveal anything beyond the truth of the
statement. A proof is non-interactive if no communication is required between the prover
and the verifier except from sending the proof. In the class of non-interactive proofs, a
particularly interesting concept for proving the computational integrity is the Succinct
Non-interactive ARgument of Knowledge (SNARK). It provides a computationally sound
proof, cheap to verify and small compared to the size of the statement or the witness.
Instead of publishing an expensive computation on the blockchain, a party publishes a
zero-knowledge SNARK proof of the correct execution of that computation. This solves
both the privacy issue and the scalability issue.

Pairing-based SNARKSs are the most efficient proof systems with respect to the suc-
cinctness property. Furthermore, this property makes them good candidates for recursive
proof composition. A recursive proof is a proof made by a prover that convinces a verifier
that other proofs made by other provers have been correctly verified by the prover. This
would allow a single proof to inductively attest to the correctness of many former proofs,
yielding even more scalable blockchains.



In this dissertation, we investigate the arithmetic of recursive pairing-based proof
systems. We present a study at three stages of the process: curves to instantiate a SNARK,
curves to instantiate a recursive SNARK, and also curves to express an elliptic-curve related
statement. We provide new constructions of curves for SNARKs and new families of 2-chain
curves for recursive SNARKSs. We derive and implement in open-source efficient algorithms
to speed up the arithmetic on these curves: co-factor clearing, subgroup membership testing,
multi-scalar multiplication and pairings over 2-chains. We also study and optimize elliptic-
curve arithmetic and pairings as a SNARK statement, yielding to the fastest recursive
proof generation in pairing-based settings.

Pairing-friendly curves for SNARKSs

Pairing-based SNARKSs cannot be instantiated with generic-purpose elliptic curves, but
instead require tailored constructions of elliptic curves. More precisely, they need pairing-
friendly elliptic curves with additional properties, purposely designed to provide an efficient
implementation. The proof generation involves solving multiple large instances of tasks
about polynomial arithmetic in F,[X] (where r is the curve prime subgroup order) and
multi-scalar multiplication (MSM) over the pairing groups. The proof verification mainly
involves computing a product of pairings.

In Part I (Chapters 1 and 2), we give preliminaries on pairings, pairing-friendly con-
structions and pairing-based proof systems. In Part II (Chapter 3), we first give an overview
of the elliptic curves designed for different proof systems, revisit some constructions in
terms of efficiency and security and propose some new ones. Next, we focus on efficient
arithmetic over these curves. We derive new results on co-factor clearing and subgroup
membership in the pairing groups.

Pairing-friendly curves for recursive SNARKSs

Because SNARKSs are succinct they allow efficient proof composition. The goal of such
proofs is to verify the validity of other proofs. This would allow a single proof to inductively
attest to the correctness of many former proofs. However, once a first proof is generated, it
is highly impractical to use the same elliptic curve to generate a second proof verifying the
first one. A practical approach requires two different curves that are closely tied together.

In Part IT (Chapter 4) we focus on the construction of families of cycles and chains of
SNARK-friendly elliptic curves for recursive proof systems. First, we present results from
the literature on cycles of pairing-friendly, plain and hybrid curves before presenting our
results on families of 2-chains and their arithmetic. We focus on efficient arithmetic on
the 2-chains and derive novel pairing algorithms. Next, in Part II (Chapter 5), we revisit
the MSM algorithm and propose optimizations in the case of 2-chains.

Pairing-friendly curves inside SNARKSs

While SNARKSs allow proving general-purpose computations, in many applications these
computations revolve around proving some cryptographic operations such as hashings, en-
cryptions, key exchanges or signatures. These operations often require efficiently expressing
elliptic-curve arithmetic as a SNARK computation which actually is a verification. This
changes the perspective on the optimization of operations on curves. The elliptic curve
used for this can be independent of the SNARK elliptic curve to prove the computation.
We call it an associated curve.



In Part IIT (Chapter 6), we investigate the question of what associated elliptic curve is
suitable for this problem in the light of the Rank-1 Constrain System (R1CS), a widely used
model to express SNARK computations. We optimize the scalar multiplication algorithm
in R1CS and construct suitable curves associated to the SNARK-friendly curves introduced
in the previous chapters. Next, in Part III (Chapter 7), we consider efficiently implementing
pairings in R1CS. This is a key step to speed up recursive proofs generation. We show
that our techniques almost halve the arithmetic circuit depth of the previously best known
pairing implementation on a BLS12 curve, resulting in 70% faster proving time. We also

investigate the case of BLLS24 curves.
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Industrial Impact

The work in this dissertation has resulted in an industrial impact. Below we first
describe the gnark open-source ecosystem that implements the totality of this work, and
then we elaborate on the adoption by other ecosystems of this work.

gnark ecosystem

The gnark ecosystem is composed of two libraries: gnark-crypto and gnark.

ghark

gnark-crypto. This is an open-source software library in Go that provides elliptic-curve
and pairing-based cryptography on a wide variety of curves (BN, BLS, BW, Edwards).
It also provides optimized finite field arithmetic and various algorithms of particular
interest to zero- knowledge proof systems (FFT, MSM, KZG, MiMC, FRI). The curves
and algorithms described in this dissertation (Chapters 3, 4 and 5) are all implemented in
this library. The gnark-crypto code is maintained by ConsenSys under the Apache 2.0
license.

Source code https://github.com/ConsenSys/gnark-crypto
@ ConsenSys /gnark-crypto | Public L\ Notifications % Fork 46 Y% star 190

gnark. This is an open-source software library in Go that offers a high-level API to
design SNARK circuits. It implements Groth16 and PLONK proof systems using any
elliptic curve implemented in gnark-crypto. The PLONK implementation comes in two
flavours: a universal one using KZG polynomial commitment and a transparent one using
FRI polynomial commitment. The repository also comes with a standard library that
implements SNARK-friendly circuits such as pairing-based proof composition, algebraic
hashes (MiMC) and EdDSA signatures (on associated curves). The curves and algorithms
described in this dissertation (Chapters 3, 4, 6 and 7) are all implemented in this library.
The gnark code is maintained by ConsenSys under the Apache 2.0 license.

Source code https://github.com/ConsenSys/gnark

& ConsenSys/gnark | Public L\ Notifications % Fork 120 Y7 star 541


https://github.com/ConsenSys/gnark-crypto
https://github.com/ConsenSys/gnark

Documentation https://docs.gnark.consensys.net

Playground https://play.gnark.io

At the time of writing, the gnark ecosystem is used by several projects such as: Con-
senSys zk-rollup, Algorand, Binance, Coinbase, IBM, Baseline, Geth, iden3 and Provide.

Other ecosystems

We also implemented some of the curves, algorithms and optimizations in this dissertation
in other ecosystems: libsnark and arkworks.

libsnark. This is an open-source software SNARK ecosystem in C++ developed by
SCIPR Lab. It uses underneath 1ibff which is a C++ library for finite fields and elliptic
curves. During the first year of this thesis, we contributed to the implementation of several
elliptic curves and pairing algorithms (Chapters 3 and 4) in this fork® of 1ibff. It was
used by Ernst& Young in the Nightfall* product.

arkworks. This is an open-source software SNARK ecosystem in Rust (http://arkworks.
rs). We contributed to the implementation of 2-chains and several optimizations (Chap-

ters 3 and 4). In particular, our implementation of the BW6-761 curve in arkworks is now

used by three blockchain projects: Celo (https://celo.org), Aleo (https://aleo.org)

and Espresso Systems (https://espressosys.com).

"https://github.com/EYBlockchain/zk-swap-1ibff
*https://github.com/EYBlockchain/nightfall


https://docs.gnark.consensys.net
https://play.gnark.io
http://arkworks.rs
http://arkworks.rs
https://celo.org
https://aleo.org
https://espressosys.com
https://github.com/EYBlockchain/zk-swap-libff
https://github.com/EYBlockchain/nightfall
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Chapter

1

Pairing-friendly elliptic curves

1.1 Background on elliptic curves

Let F, be a field for some prime p > 3. In this thesis we shall always define curves over a
field of prime order and of characteristic strictly greater than three. An elliptic curve F
over such a field IF,, can always be reduced to the short Weierstrass equation of the form

E:y=2*+ar+b

where a,b € F,,. Let A = 4a® + 27b%, the discriminant of the cubic equation in z. Then F
is singular if A = 0 (repeated roots) and nonsingular otherwise (distinct roots). Elliptic
curves are nonsingular (smooth) curves.

For any field F, define E(F,) to be the set of all solutions of E over F,, called the finite
points along with a special point denoted O, that is called the point at infinity. We write
#E(F,) for the number of elements of E(F,). Solving the curve equation using projective
coordinates, one can show that O = (0:1:0) is always a unique infinite solution to the
equation. This set of points forms a group under the composition law noted additively

(+)-

The group composition law: Chord-and-tangent

Let Py = (z1,y1) and P = (22, y2) be any two points on E(F,). The group law is given
as follows:

(a) Pl—f-O:Pl andO—}-Pg:PQ

(b) =P, = (z1,—y1) and — Py = (22, —ys)

Part I - Preliminaries 11
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Figure 1.1: Examples of (smooth) elliptic curves over R and [Fy7; and singular curves over
R

Y
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(a) B/R: y* = 2® -2 (b) E/R: y* = 2> — 62 + 4 (c) E/Fi7: > =2 +2+1

(d) E/R: y* =2%(z 4+ 1) (e) E/R: y* = 23(singular: cusp)
(singular: node)

(c) Define A as

(327 +a)/(2u1) if P =P
The point Py = P, + P, is given by P3 = (z3,y3) with

\ = {(92 —y1)/(xg — ) if Py # Py

T3 =N — 21 —To; Y3 =Nz —23) — Y1 .

A geometric interpretation. To add P; and P, one takes the line ¢ passing through
them. If the points are equal, one takes the tangent to F in P; (= P). From Bézout’s
theorem, we know that ¢ intersects with £ in a third point. The reflection of this third inter-

section point about the z-axis is the sum Pj. Figure 1.2 shows this geometric interpretation
of the group law over R.

Scalar multiplication. The multiplication-by-m map, or scalar multiplication is

m]: E — FE
P - P+4+...+P
N————

m copies of p

for any m € Z, with [-m|P = [m|(—P) and [0]P = O.

Given m > 0, computing [m]P as P+ P + ... P with m — 1 additions is exponential
in the size of m: m = e™™. We can compute [m]P in O(logm) operations on E with
the naive double-and-add method (Alg. 1.1). Better algorithms can be derived with dif-
ferent scalar encodings (NAF [MO90|, DBNS [DIMO05]), windowing methods and efficient
endomorphisms if available (GLV |GLV01]).
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Figure 1.2: Chord-and-tangent rule over R

P

-

P3:P1+P2

(a) “Chord™ P; + Py (b) “Tangent™ 2P

Algorithm 1.1: Double-and-add algorithm for scalar multiplication
Input: E defined over F,, m > 0, P € E(F,)

Output: [m|P € E

if m =0 then return O

n—1
Write m in binary expansion m = Z b;2" where b; € {0, 1}
i=0
R+ P
for i =n — 2 downto 0 do loop invariant: R = [|m/2"|] P
R+ [2|R
if b, = 1 then
R+ R+ P
return R

1.2 Background on pairings

We recall elementary definitions of pairings and present the computation of two pairings
used in practice, the Tate and ate pairings. All elliptic curves discussed below are ordinary
(i.e. non-supersingular).

Let E be an ordinary elliptic curve defined over IF,. Let 7, be the Frobenius endomor-
phism: (z,y) ~ (2, y"). Its minimal polynomial is X? — tX + p where ¢t # 0 is called
the trace. Let r be a prime divisor of the curve order #E(F,) = p+ 1 — t. The r-torsion
subgroup of E is denoted E[r] :== {P € E(F,), [r]P = O} and has two subgroups of order r
(eigenspaces of , in Er]) that are useful for pairing applications. We define the two groups
G, = E[r] Nker(m, — [1]) with a generator denoted by G;, and Gy = E[r] Nker(m, — [p])
with a generator Gy. The group G, is defined over F,x, where the embedding degree k is
the smallest integer k& € N* such that 7 | p* — 1.

We recall the Tate and ate pairing definitions, based on the same two steps: evaluating
a function f, ¢ at a point P, the Miller loop step, and then raising it to the power (p* —1) /7,

pks
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the final exponentiation step. The function f, o has divisor div(fsq) = s(Q) — ([s]Q) —
(s —1)(O) and satisfies, for integers i and j,

oeate)
Vli+51Q

fiviq = fiolio

where £j;)0,;0 and vji1 ;o are the two lines needed to compute [i + j]Q from [¢]@ and [j]Q
(¢ intersecting the two points and v the vertical). We compute f;o(P) with the Miller
loop presented in Algorithm 1.2.

Algorithm 1.2: MillerLoop(s, P, Q)
t
Output: m = f; o(P) for s = Z 5;2"
i=0

m<+ 1; S < Q;
for b fromt —1 to 0 do

U+ lss(P); S+ [2]5; // DOUBLELINE
v vps(P); VERTICALLINE
m < m? - {/v; // UPDATE1
if s, =1 then
0 lsq(P); S+ S+ Q; // ADDLINE
v — vg1(P); VERTICALLINE
m<—m-{/v; // UPDATE?2
return m;

The Tate and ate pairings are defined by

Tate(P, Q) = f,,p(Q)" /"
ate(P, Q) = fi_1.0(P)®" D/

where P € Gy and ) € G,. The final exponentiation eliminates any factor which lives in a
strict subfield of F,» [BKLS02|. In case the embedding degree k is even, the vertical lines
vs+q(P) and vps(P) live in a strict subfield of F,r so these factors will be neutralized by
the final exponentiation. Hence, in this situation we ignore the VERTICALLINE steps
and remove the divisions by v in UPDATE1 and UPDATE2 steps.

In the sequel, when abstraction is needed, we refer to a pairing as the bilinear map
(cf. 1.3):

€3G1XG2—>GT

Complex multiplication and endomorphisms. It is also important to recall some
results with respect to the complex multiplication (CM) discriminant —D. When D = 3
(resp. D = 4), the curve has CM by Q(v/—3) (resp. Q(v/—1)) so that twists of degrees 3
and 6 exist (resp. 4). When F has d-th order twists for some d | k, then G, is isomorphic to
E'[r](Fx/a) for some twist £'. Otherwise, in the general case, E admits a single twist (up
to isomorphism) and it is of degree 2. We denote ¢; and ¢, the Gy and resp. Go cofactors,
i.e #E(F,) = cir and #E' (Fora) = cor .
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Figure 1.3: A bilinear pairing G; x Gy — Gp .

Figure courtesy of Diego F. Aranha.

When D = 3, the curve has a j-invariant 0 and is of the form y* = 2° + b (a = 0). In
this case, an efficient endomorphism ¢ exists on G;. Given 3 a cube root of unity in F,,

¢ E(Fy)[r] = E(Fy)[r]
(x,y) — (Br,y) (and O+ O) .

The endomorphism ¢ has a minimal polynomial X2+ X + 1 and an eigenvalue \ satisfying
M4+ A+1=0 modr. When D = 1, the curve has j-invariant 1728 and is of the form
y? = 2% + ax (b= 0). In this case an efficient endomorphism o exists on G;. Given i € F,,
such that i = —1,

o : E(F,)[r] = E(F,)r]
(x,y) — (—z,iy) (and O — O) .

On Gg, an efficient endomorphism is ¢ the “untwist-Frobenius-twist” introduced in [GS08a].
1) has a minimal polynomial X? — tX + p and is defined by

Y E'lr)(Fprsa) = E'[r](Fprsa)
(z,y) = & omo&(z,y) (and O+ O) .

where ¢ is the twisting isomorphism from E’ to E. When D = 3, there are actually two
sextic twists, one with p 4+ 1 — (—=3y +t)/2 points on it, the other with p+ 1 — (3y +1)/2,
where y = /(4p — t?)/3. Ounly one of these is the “right” twist, i.e. has an order divisible
by r. Let v be a quadratic and cubic non-residue in F .« and X 6 — v an irreducible
polynomial, the “right” twist is either ? = 2 +b/v (D-type twist) or y* = 2 +bv (M-type
twist). For the D-type, the twisting isomorphism from E' to E is ¢ : (x,y) — (v'/3z, 11/%)
and 1 becomes

Y (z,y) = (VP3P ye=D/2y0y (and O — O) .
For the M-type, ¢ : (z,9) — (v**z/v,v"/?y/v) and ¥ becomes
P (2, y) > (VPEDBep PN 2eey (and O O) .

For other d-twisting ¢ formulae, see [Sco09].

Most of pairing-friendly curves fall into polynomial families, i.e. the curve parameters
are expressed as polynomials p(z),r(z) and ¢(x). These polynomials are then evaluated
at a “seed” u to derive a given curve (cf. Sec. 1.3).
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1.3 Some pairing-friendly constructions

We recall some methods and families from the literature related to pairing-friendly construc-
tions that will be of interest in the following sections. A detailed study of these constructions
is available in the taxonomy paper by Freeman, Scott and Teske [FST10]. We focus on the
Cocks—Pinch [FST10, Sec. 4.1] (CP) and Brezing—Weng [FST10, Sec. 6.1] (BW) methods,
and Barreto-Lynn—-Scott [FST10, Sec. 6.6] of embedding degrees 12 and 24 (BLS12 and
BLS24), Barreto-Naehrig [BN06| (BN), Miyaji-Nakabayashi-Takano [FST10, Sec. 5.1]
of embedding degrees 4 and 6 (MNT4 and MNT6), Galbraith-McKee-Valenca [GMV04]
[FST10, Sec. 5.2] of embedding degree 6 (GMV6) and cofactor 4 families and Kachisa—
Schaefer—Scott [KSS08| of embedding degrees 16 and 18 (KSS16 and KSS18) families.
From a high level perspective, there are two ways to obtain pairing-friendly curves.
Generic algorithms take as inputs k£ and r, and output (if it exists) an elliptic curve defined
over a field F,, and of embedding degree k£ w.r.t. a subgroup of prime order r over [F,. If
r is an integer, this is the Cocks—Pinch method, if r is a polynomial, this is the Brezing—
Weng method. The alternative is to consider precomputed tables of polynomial families
(k,r(x),D,t(x),p(x)) as in [FST10]. To rank the families of the same k, the p-value is
defined as the ratio of the sizes of p and r, resp. the ratio of the degrees of the polynomials
p(z) and r(x):
log p deg p(z)

. = 1.1
PP degr(z) (1.1)

~ logr’

and because 7 | p+ 1 —t, then p > 1.

Cocks—Pinch is the most flexible method and can be used to construct a curve E(F))

with arbitrary embedding degrees and a subgroup order r such that the ratio p =

log, p/ log, r is approximately 2. It works by fixing r and the CM discriminant D and

then computing the trace ¢ and the prime p such that the CM equation 4p = t* + Dy?
(for some y € Z) is satisfied (cf. Alg. 1.3).

Algorithm 1.3: Cocks—Pinch method
Input: A positive integer k and a positive square-free integer D

Output: E/F, with an order-r subgroup and embedding degree k
Choose a prime r such that k£ divides r — 1 and —D is a square modulo r;
Compute t = 1 4 2""V/* for z a generator of (Z/r7Z)*;
Compute y = (t — 2)/v/—D mod 7;
Lift ¢t and y in Z;
Compute p = (t* + Dy*)/4 in Q;
if p is a prime integer then

| Use CM method (D < 10"?) to construct E/F, with order-r subgroup;
else

‘ Go back to 1;
return E/F, with an order-r subgroup and embedding degree k

Barreto, Lynn and Scott [BLS03| and later Brezing and Weng [BWO05| generalized the
Cocks—Pinch method by parameterizing ¢, r and p as polynomials. This led to curves with
a ratio p < 2. Below, we sketch the idea of the algorithm in its generality for both BLS
and BW constructions (cf. Alg. 1.4). Particular choices of polynomials for k¥ = 12 and
k = 24 yield two families of curves with good security /performance trade-offs, denoted
respectively BLS12 and BLS24. The parameters are given in Table 1.1.
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Algorithm 1.4: Idea of BLS and BW methods
Input: A positive integer k and a positive square-free integer D

Output: E/F,,) with an order-r(z) subgroup and embedding degree &

Choose an irreducible polynomial r(x) € Z[z]| with a positive leading coefficient such that
v/—D and the primitive k-th root of unity ¢, are in K = Q[z]/(r(z));

Choose t(z) € Q[x] be a polynomial representing (; + 1 in K;

Set y(x) € Q[z] be a polynomial mapping to ({x — 1)/v/—D in K

Compute p(z) = (*(x) + Dy*(x))/4 in Q[a];

while p(x) is not irreducible do
‘ Go back to 1;

return E/F,) with an order-r(x) subgroup and embedding degree k

MNT curves, however, have a fixed embedding degree k € {3,4,6} and a variable
discriminant D. They are also parameterized by polynomials and form a sparse family
(cf. Table 1.1) because one is required to solve a generalized Pell equation. Karabina and
Teske [KTO08] showed that there is a prime-order elliptic curve £/, from the MNT6 family
if and only if there is a prime-order elliptic curve E'/F, from the MNT4 family such that
#E(F,) = q and #E'(F,) = p.

GMYV curves extend MNT curves with cofactors 2 < ¢; < 5. This is achieved by
following the MNT strategy and substituting ¢; - r for #E(F,) followed by an explicit
analysis of the cases ¢; = 2, 3,4 and 5. Polynomial parameters for GMV with £ = 6 and
c1 = 4 are given in Table 1.1 (the parameters in bold are used in Sec. 2.2.1). Later, Le
et. al [LMHT18|] extended these constructions to any cofactor c;.

BN curves form a family of prime-order pairing-friendly elliptic curves with £ = 12
and D = 3 (cf. Table 1.1). The construction is based on a result from |[GMV07| and a
lucky try in which the right-hand side of the CM equation happens to be a constant times
a perfect square polynomial. However, it was suggested in [FST10, Example 6.8| that the
BN construction can be viewed as a complete family on its own.

Another strategy to build pairing-friendly constructions is to pick random small ele-
ments and take their minimal polynomials as the subgroup order polynomial r(x). For well
chosen embedding degrees k = 16 and k = 18, this yields the KSS16 and KSS18 families
with p = 5/4 and p = 4/3 respectively (cf. Table 1.1).
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Family | &k | D | p r(z) p(z) t(z)
BN [12]—-3| 1 |362" +362°+182° + 6z + 1 362 4 3627 + 2427 + 62 + 1 62% + 1
BLS12 [ 12| -3 3/2 ot — 2?1 (2% —22°+22° —x+1)/3+ T+ 1
10 9 8 6 5
B s 4 (7 — 22" + 2° — 2® + 22°—
BLS24 |24 | —3|5/4 -zt +1 e t1)/3 r+1
2 —
MNT4 | 4| D | 1 x§+2i‘f2 P+l x‘iof
MNT6 | 6 | D | 1 4o £ 22+ 1 4a* + 1 1+2z
2
GMV6 | 6 | D | 1 Az qfél’ +1)1 1622 + 10z + 5 2 + 2
— gt —
B 2827 + 10z + 1 2
(cp =4) — Byt — 1)/7 11227 + bdx + 7 14z + 4
2
2_8“""(1) ?8”’1)773 11222 + 86 + 17 14z + 6
— Pt —
52x2 4+ 14z + 1 0
gt — 1)/13 208x2 4+ 30z + 1 —26x — 2
2
5_2”;) (t 38{’)71; 20822 + 1262 + 19 26z — 8
— Dyt —
10 9 8 6 5
B 9 4 (™ + 22" 4 5x® + 48x° + 1522°+ 5
KSS16 |16 | —1|5/4 | (2" + 482" +625)/61550 |, 4 6250 1 2398z + 3125) /980 (22° + 412 + 35)/35
8 7 6 5 !
B 6 3 (x° 4 bx" + Ta® + 37x° 4 188z"+ 4
KSS18 | 18| —3|4/3 (2° + 372° + 343) /343 2502 + 34327 + 1763z + 2401)/21 (z* + 162 +17)/7

Table 1.1: Polynomial parameters of BN, BLS12, MNT4, MNT6, GMV6, KSS16 and KSS18

families.




Chapter

2

Pairing-based proof systems

2.1 Proof systems

A proof system is an interactive protocol where one party (called the prover) tries to
convince another party (called the verifier) that a given statement is true. In a zero-
knowledge proof, we further require that the proof does not reveal anything beyond the
truth of the statement. A proof is non-interactive if no communication is required between
the prover and the verifier except from sending the proof.

Prover Verifier
I know the solution to No idea what the solution is
this complex equation but Alice must know it
“Prove it”
Challenge
Response

Example: sigma protocol
Prover Verifier

I know z such that [z]G = P

random
m +— T,

A=[mlG

Ci H(A, P) = (4,cs) 2
s=m-4+c-x [51G = A+[dP

c=H(A,P)

Part I - Preliminaries 19
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In the class of non-interactive proofs, a particularly interesting concept for proving the
computational integrity is the Succinct Non-interactive ARgument of Knowledge (SNARK).
It provides a computationally sound proof that is cheap to verify and small compared to
the size of the statement or the witness. SNARK systems can be further equipped with a
zero-knowledge property that enables the proof to be verified without revealing anything
about the intermediate steps (the witness generation). We say that a zk-SNARK is:

e Sound, if No cheating prover can convince an honest verifier of a false statement;

Complete, if An honest prover always convinces an honest verifier of a true statement;

Succinct, if An honestly-generated proof is “short” and “easy” to verify;

Non-interactive, if No interaction between the prover and verifier is required;

ARgument of Knowledge, if An honest verifier is convinced that a computationally
bounded prover knows an information related to the statement;

e Zero-knowledge, if a verifier learns nothing other than the truth of the statement.

Proof systems were introduced in [GMR89] and extensively studied both in theoretical
and applied settings (e.g. [Kil92,Mic94, GW11,BCCT12]). Recent constructions focus on
a panoply of settings that range from cryptographic assumptions, asymptotic efficiency,
concrete performance of implementations to numerous applications. The mathematical
security of many schemes relies on variants of the discrete logarithm problem (DLP):
given a cyclic group G of prime order r written additively, a generator G, and an element
P € G, compute z € {0,1,...,7 — 1} such that [z]G = P. For example, the DLP-based
zero-knowledge proofs (e.g. [BCC*16], Bulletproofs [BBB*18], Hyrax [WTs"18|) require
a group G where the discrete logarithm problem is hard. They can be instantiated with
any cryptographically secure elliptic curve, where the problem is then referred to as the
Elliptic Curve Discrete Logarithm Problem (ECDLP). An efficient implementation uses
the Ristretto group [Ham15, Val21| over ed25519 [BDL*12| (e.g. Bulletproofs’ Dalek
library [dVYA22]).

Alternatively, a bilinear pairing is required in certain schemes. Pairing-based SNARKSs
cannot be instantiated with general-purpose elliptic curves, but instead require tailored
constructions of elliptic curves. More precisely, they need pairing-friendly elliptic curves
with additional properties, designed to provide an efficient implementation. In the following
chapters, we give an overview of the elliptic curves designed for different proof systems,
revisit some constructions and propose some new ones.

zk-SNARK algorithms. In the following, we mainly focus on pairing-based zk-SNARKSs
for Non-deterministic Polynomial (NP) languages for which we give a basic algorithmic
overview. Given a public NP program F', public inputs a and b and a private input w, such
that the program F satisfies the relation F'(a,w) = b, a zk-SNARK consists in proving
this relation succinctly without revealing the private input w. Given a security parameter
A, it consists of the Setup, Prove and Verify algorithms (cf. 2.1):

(0,0,) < Setup(F,1%)
T < Prove(a, b, w, o))

0/1 < Verify(a,b, 7, 0,)
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where o), is the proving key which encodes the program F for the prover, o, the verification
key which encodes F' for the verifier and 7 the proof. If the Setup algorithm is trapdoor-ed
an additional secret input 7 is required (o, 0,)  Setup(F, 7, 1%).

Anyone (trusted)
(UP7 UU) — Setup(F7 T, 1>\)

Alice (prover) - Bob (verifier)
7 < Prove(a, b, w,0,) — Verify(a,b, 7, 0,)?

Figure 2.1: zk-SNARK algorithms. Public parameters are in blue and private ones in red.

Definition 2.1 ( [BCTV14b|). A succinct proof m has size Ox(1) and can be verified in
time Ox(|F| + |a| + |b]), where Ox(.) is some polynomial in the security parameter X.

2.2 Proof systems and pairings

Building on ideas from the pairing-based doubly-homomorphic encryption scheme [BGN05|,
Groth, Ostrovsky and Sahai [GOS06, Gro06, GSO8b]| introduced the pairing-based non-
interactive zero-knowledge proofs, yielding the first linear-size proofs based on standard
assumptions. Groth [Grol0| combined these techniques with ideas from interactive zero-
knowledge proofs to give the first constant-size proofs which are based on constructing a
set of polynomial equations and using pairings to efficiently verify these equations. This
work relies on two new introduced pairing-based cryptographic assumptions, namely the
g-computational power Diffie-Hellman (¢-CPDH) and the g-power knowledge of Exponent
(¢-PKE).

The q-PKE assumption. The knowledge of exponent assumption (KEA) says that
given G, [a]G it is infeasible to create P, P so that P = [a]P without knowing a so
that P = [a)G and P = [a]([a]G). Bellare and Palacio [BP04] extended this to the
KEA3 assumption which says that given G, [z]G, [a]G, [z][a]G it is infeasible to create
P, P so that P = [a]P without knowing ag, a; so that P = [ag)G + [a1]([z]G) and
P = [ag)([a]G)+]ex]([a1]G). The ¢-PKE assumption is a generalization of KEA and KEA3.

It says that given (G, [z]G, - - -, [29]G, [a]G, [ax]G, - - - , [az?]G) it is infeasible to create P,
q

q
P so P = [a] P without knowing ay, - - - , ag s0 P = Z[al]([:cl]G) and P = Z[ai]([axi]G).
i=0

=0

The ¢q-CPDH assumption. The computational Diffie-Hellman (CDH) assumption
says that given G, [a]G, [x]G it is infeasible to compute [az|G. The g-computational power
Diffie-Hellman assumption is a generalization of the CDH assumption that says given
(G, [z]G, -, [29G, []G, [ax]G, - - -, [az9]G) except for one missing element [az’]G, it is
hard to compute the missing element.

The ¢-CPDH assumption is a standard computational intractability assumption but
the ¢-PKE is a so-called knowledge of exponent assumption. Knowledge of exponent
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assumptions have been criticized for being unfalsifiable [Nao03] but the use of a non-
standard assumption may be unavoidable for statistical zero-knowledge arguments [AF07].

Overview of the [Gro16] construction. Given an instance ® = (ao, ..., a;) € F: of
a public NP program F', the SNARK algorithms (cf. Fig. 2.1) are:

e (0,,0,) < Setup(F,7,1%) where

0y = (O, s {Jvﬂi}fzo, Oy, 005) € Gp X G x Gy x Gy

e 7 < Prove(®,w,o,) where

T = (A,B,C) € Gl X Gg X Gl (O/\(1>, Def. 21)

e 0/1 + Verify(®,r,0,) where Verify is
e(A, B) = 0y, , - €(00,,00,) - e(C,04) (Oa(|®]), Def. 2.1) (2.1)

¢
and o,, = Z [a;]o,, depends only on the instance ® and o, , = e(0,,,0,,) can be
i=0
computed in the trusted setup for (o,_, Uvﬁ) € Gy x Ga.

The Setup and Prove algorithms mainly consist in multi-scalar multiplications (MSM)
in G; and Gy groups and polynomial arithmetic in F,, using Fast Fourier Transforms
(FFTs) (cf. Table 4.21).

2.2.1 Pairing-friendly curves for SNARKSs

Following this direction of work, Gennaro et al. [GGPR13] proposed an insightful construc-
tion of polynomial equations that resulted in many interesting implementations [PHGR13,
BFR*13,BCG"13,BCTV14b, KPP"14] leading to the most succinct and widely imple-
mented pairing-based SNARK [Grol6]. The first implementation, Pinocchio [PHGR13]
used a pairing-friendly elliptic curve in the BN family [BNO6| (BN) targeting a 128-bit
security level, but the source code was proprietary. They used the BN curve defined over a
256-bit field suggested in [NNS10| (seed z = 1868033?). Next, as part of Pantry [BFR'13],
authors re-implemented Pinocchio under a BSD-style license using a 254-bit BN curve
from [BGM™10] (seed x = —(2% + 2% + 1), first introduced in [NAST08]). This new
BN implementation partially builds on techniques from the previous BN paper [NNS10|
Pinocchio used.

Later in [BCG'13|, the authors observed that constructing a pairing-friendly curve
with a subgroup order r where r — 1 is divisible by 2% a large power of 2, results in an
efficient proof generation via suitable Fast Fourier Transforms (FFTs) in F,.. To speed up
the arithmetic, they proposed to use the elliptic curve in Edwards form, by looking for a
group order multiple of 4. To match these two constraints: 2¥ divides r — 1 and the curve
has order 4 - r, they designed a Galbraith-McKee-Valenga curve [GMV07]| of embedding
degree 6 (GMV6) defined over [F,, where p is a prime of 183 bits, and of order 4r where r
is of 181 bits such that 2*' | » — 1. This curve was targeting a 80-bit security level in 2013
and was implemented in 1ibff [BSCT a).
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The same year, [BCTV14b| improved previous SNARK works and developed their
implementations with two different curves: the same GMV6 curve for the estimated 80-
bit security level (2*' | 7 — 1) and a new BN curve for the estimated 128-bit security
level (2% | » — 1). Note that, as of today, this BN curve is the one precompiled in the
Ethereum blockchain. Last, Trinocchio [KPP*14| provided an implementation of a privacy-
preserving version of Pinocchio using the BN curve from [BCTV14b|. As the number of
applications increases, other implementations were released especially in the blockchain
space. In particular, Zcash cryptocurrency first implemented Zerocash protocol [BCG™14]
which uses the SNARK of [BCTV14b| and its BN curve, before switching to the SNARK

of [Grol6| and a new curve.

Security of pairing-based schemes. The previous paragraphs told an overview over
ten years of active and fruitful research on SNARK from the prelude [BGNO5] in 2005 to
2016 with [Grol16|. Meanwhile, the research in discrete logarithm computation in finite fields
related to pairings also saw a tremendous decade, with a prequel in 2012 with a discrete
logarithm record-breaking computation in GF(3%7) in [FNK12]. This announcement had
a quite important impact over the community at that time [GM16, §9.3.8 p.30], probably
because the broken curve was introduced with the BLS short signatures [BLS01]. The tar-
geted finite field GF(3%97) was considered safe for 80-bit security implementations in 2012.
In 2014, two algorithms on fast computation of DL in small characteristic finite fields were
published [BGJT14, GKZ14| (quasi-polynomial-time algorithm, zig-zag descent). In 2019,
Granger et al. announced the largest record computation in a field GF(2°07%) [GKL"21],
and finally [KW22] published a proved complexity. Nowadays, small-characteristic finite
fields should be definitely avoided, as computing DL is not hard anymore especially if
the extension degree is composite, which renders supersingular elliptic curves in small
characteristic insecure.

Cryptanalysts also considered large and medium characteristic finite fields of the form
GF(p") that arise with pairings. In 2016, Kim and Barbulescu [KB16] presented a variant
of the Number Field Sieve (NFS) algorithm which reduced the security level of the BN
curves previously at 128-bit security to around 110. Menezes, Sarkar and Singh [MSS16|
were the first to analyze thoroughly the consequences of the new NFS variants on the
security of pairing-friendly curves. Their conclusions recommend the Barreto-Lynn-Scott
curves of embedding degree 12 [BLS04| or BN curves over 384-bit prime fields instead of
BN curves over 256-bit fields. Based on this work, the Zcash team derived the BLS12-
381 curve defined over a 381-bit field with a 255-bit prime subgroup order r such that
232 | r — 1 [Bow17]. This curve is used today in several projects (e.g. Zcash, Ethereum
2.0, Skale, Algorand, Dfinity, Chia), implemented in different libraries and considered for
IETF standards.

2.2.2 Pairing-friendly curves for recursive SNARKSs

Besides their efficiency, SNARKSs’ succinctness makes them good candidates for recursive
proof composition. Such proofs could themselves verify the correctness of other proofs.
This would allow a single proof to inductively attest to the correctness of many former
proofs. However, once a first proof is generated, it is highly impractical to use the same
elliptic curve to generate a second proof verifying the first one. In pairing-based SNARKSs
the proving algorithm runs in [F, while the verification algorithm runs in [F,. Ideally, we
would like to select a curve E with p = r, so that proving arithmetic is over the same field
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for which the statement (the verification of the previous proof) is defined. Unfortunately,
this cannot happen: the condition that F has embedding degree k with respect to r
implies that r | p* — 1, which implies that p # r. Furthermore, the curves satisfying
this condition have a trivial discrete logarithm problem. So, while appealing, this idea
cannot even be instantiated. Since we are stuck with p # r, we may consider doing “long
arithmetic”: simulating IF,, operations via I, operations, by working with bit chunks to
perform integer arithmetic, and modding out by p when needed. Alas, having to work at
the “bit level” implies a blowup on the order of log p compared to native arithmetic. So,
while this approach can at least be instantiated, it is very expensive. A practical approach
requires two different curves E(F,) and E'(FF,) that are closely tied together (cf. Fig 2.2).

#E'(F,) =p

Figure 2.2: A cycle of elliptic curves.

Therefore, we need to find new pairing-friendly curve constructions for this problem.
In practice, given a curve equation over a finite field, computing its order can be done
efficiently with the SEA algorithm, while given p and r, computing the parameters of the
curve equation involves computing a class polynomial (e.g. with Sutherland software [Sut11,
ES10]), and it is infeasible if the curve discriminant D is too large (say more than 20 decimal
digits). Ben—Sasson et al. [BCTV14a] presented the first practical setting of a recursive
proof composition with a cycle of two MNT pairing-friendly elliptic curves [MNTO1]. Proofs
generated from one curve can feasibly reason about proofs generated from the other curve
resulting in an unbounded number of recusion layers. To achieve this, one curve’s order is
the other curve’s base field order and vice-versa (i.e. #E'(F,) = p and #E(F,) = q). The
two curves are necessarily of prime order [CCW19, Sec. 7], hence cannot admit an Edwards
form. Moreover, they have low embedding degrees (4 and 6) resulting in large base fields
to achieve a standard security level. The authors proposed a pair of MNT curves with
parameters of 298 bits which they estimated to meet the 80-bit security level in 2014. It
should be noted that it was Karabina and Teske [KT08| who first showed in 2008 that
there always exist a MNT4/MNT6 cycle.

Around approximately the same time as [BCTV14a|, Costello et al. [CFH"15] built on
this idea to obtain a bounded recursive proof composition using a 2-chain of two elliptic
curves (cf. Fig 2.3),i.e. a BN curve (with seed z = —(224-2% +1) from [NAS*08|) defined
over a 254-bit field IF,, and a BW6-509 curve constructed using the Brezing-Weng method
(BW) in a way that it has a prime subgroup order equal to p the field characteristic of
BN’s IF,,. This set of curves allows a one-layer recursion. Note that both MNT4 and MNT6
respective F* fields contain large enough powers of two (2'7 | r — 1) while Geppetto’s
BN and BW6 are not. Later on, [BCTV14a| authors found a new MNT4/6 pair with
parameters of 753 bits which they estimated at the 128-bit security level. They shared the
parameters of this latter pair with the Coda protocol [BMRS20] developers (now Mina)
who used it to build a recursive SNARK-based light blockchain. They updated the preprint
with this pair of parameters only recently (2020).

A few years after [BCTV14a|, motivated by a new proof composition application
(decentralized private computation), ZEXE [BCG*20| proposed a new chain of curves. It
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Figure 2.3: A 2-chain of elliptic curves.

is similar to Geppetto’s chain although the citation was missing. The first curve is a BLS12-
377 defined over a 377-bit field with a subgroup r of 253 bits (2*7 | » — 1) and, using the
more rudimentary Cocks-Pinch method (CP), the second curve is a CP6-782 of embedding
degree 6, defined over a 782-bit field and having a group order divisible by BLLS12-377’s
base field size p. Based on this inner BL.S12-377, we proposed in [EHG20| an alternative
outer curve to CP6-782 that is much faster for a recursive SNARK |Grol6] generation and
verification. We used a variant of the Brezing—Weng method to construct a BW6-761 curve
of embedding degree 6 defined over a 761-bit field and enjoying properties for efficient
implementation. Later, in [EHG22|, we generalized the BW6-761 curve construction, the
pairing formulas and the group operations to any BW6 curve defined on top of any BL.S12
curve, forming a family of 2-chain pairing-friendly curves.

Universal zk-SNARKs Up to this point, all the pairing-based SNARKS use the three
pairing groups Gi, Gy and G whether for proving, verifying or setting the SNARK up.
Therefore, all previously mentioned curves were constructed in order to optimize operations
in the three different groups. Note that the most efficient pairing-based SNARKSs have
a trapdoor-ed setup phase specific to the statement to prove (e.g. [Grol6|). Recently, a
new kind of SNARKs was introduced, where the setup phase is not specific to a given
statement but is rather universal in that sense. Groth et al. [GKM™18] proposed a universal
SNARK with a single setup to prove all statements of a given bounded size. However,
Sonic [MBKM19] is considered to be the first practical universal SNARK. This work
inspired many researchers and practitioners who then came up with new and elegant
universal constructions (e.g. AuroraLight [Gab19], PLONK [GWC19], Marlin [CHM*20]).

These universal constructions follow a similar design as Sonic and they use as a funda-
mental building bloc a polynomial commitment (PC) scheme. While there are different
PC schemes with trade-offs, the KZG scheme [KZG10| remains the most efficient. It uses
pairings and therefore its implementation requires a suitable pairing-friendly elliptic curve.
Contrary to the previous pairing-friendly curves used in the SNARK context, KZG-based
universal SNARKSs need a curve optimized only for G; arithmetic and pairings. In fact,
on the one hand, in pairing-based SNARKSs with a circuit-specific setup phase, the pairing
is used to verify that some polynomial identities hold in a secret point included in the
trapdoored setup. In KZG-based universal, on the other hand, the pairing is used to open
a polynomial commitment (and element in G;) to a field element, and the polynomial
identities are verified in the field. This observation inspired us in [EHG22], to investigate
the use of Barreto—Lynn—Scott curves of embedding degree 24 (BLS24) to instantiate
KZG-based universal SNARKs. At the 128-bit security level, the coefficient ring of the
elements of BLLS24 G4 is much smaller compared to BLS12. We proposed a BLS24-315
curve defined over a 315-bit field with a subgroup order r of 253 bits such that 2% | r — 1.
Moreover, similarly to the BLS12-BW6 chains, we characterized all 2-chains that can be
formed with a BLLS24 as an inner curve and BW6 as an outer curve. We short-listed a
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few BW6 curves (e.g. BW6-633 and BW6-672) and looked into Cocks-Pinch curves of
higher embedding degrees (CP8 and CP12) for a more conservative security. This work
was implemented in the gnark ecosystem [BPH'22a] using PLONK proof system.

Overview of the KZG polynomsial commitment. A polynomial commitment scheme
allows to commit to a polynomial and then open it at any point, showing that the value
of the polynomial at a point is equal to a claimed value p(z) = y. It consists in four
algorithms

e (0,,{0,}) ¢ Setup(r,1*) : for some security parameter \, sample randomly 7 < TF,

and then compute o, = 7'G; for i € {1,...,m} and o, = 7G>.
e (' < Commit(o,,p) : given the polynomial p(x Z pix' € F,[z] of degree n < m
n<m
and the proving key o, compute C' = p(7 Z Di -

e 7 < Open(p,y, z) : to prove that p(z) = y, compute the polynomial ¢(z) = (p(z) —
y)/(x — z) and then the proof m = ¢(7) - G

e 0/1 < Verify(C,m,0,) : compute P, = zGy and P, = yGy, and then verify that
e(r,0, — P,) =e(C — P, Gy).

Proof (correctness of the KZG protocol).

e(m, o, — P,) =e(C Go)
(() Gl,TGQ—ZGQ)E (p(T) Gl—yGl,Gz)
e(Gy, Go) D=9 = (G, Go )"
——
€ Gr\ {1} € Gr \ {1}

]

non-pairing recurston. The universality of these constructions comes from the nature
of the polynomial commitment scheme. By swapping the KZG scheme for other PC
schemes [BCC"16, VP19, BFS20], one gets new transparent (no setup) SNARKs [KPV19,
BFS20] and new transparent recursive SNARKs as first proposed by Bowe, Grigg and
Hopwood in [BGH19| (Halo) and then formalized and generalized in [BCMS20,BDFG21].
These recursive constructions build on the discrete logarithm based PC from [BCC*16]
and Bulletproofs [BBB*18| and one might want to instantiate them with a non-pairing-
friendly elliptic curve like ed25519. However, having an efficient recursion requires a cycle
of elliptic curves as in [BCTV14a|, hence the curves are of prime order, which means
Edwards and Montgomery forms are not possible. Although this time, the curves do not
need to be pairing-friendly. To this end, Halo’s authors derived an efficient cycle for SNARK
implementation, namely the Tweedledum-Tweedledee cycle. Later, Hopwood proposed the
more efficient Pasta cycle [Hop20|. Note that finding such cycles is much easier than finding
pairing-friendly cycles. It was investigated previously in a different context by Stange and
Silverman [SS11]. It should be noted that it was Frangois Morain who first experimentally
discovered the existence of non-pairing cycles in his implementation of ECPP [Mor07]
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and their definition was later formalized in [Mih07a| by Preda Mihailscu in the context
of primality testing. Finally, as a future work, Halo suggests using the same SNARK
techniques with a hybrid cycle where one curve is pairing-friendly and the other is not.
Thereafter, Hopwood proposed a hybrid cycle, Pluto-Eris [Hop21|. Such a cycle can be
constructed from any prime-order pairing-friendly curve (e.g. BN [BNO6|, Freeman [Frel0],
MNT [MNTO1]).

2.2.3 Elliptic curves in SNARKSs

SNARKSs enable verifying non-deterministic polynomial time (NP) computations with
substantially lower complexity than those required for classical NP verification. In many
applications (e.g. privacy-preserving cryptocurrencies, zk-rollups, verifiable computation
outsourcing), the NP-computation revolves around proving the knowledge of a hash preim-
age or the verification of a cryptographic signature. In COCQ [KZM™*15], Kosba et al. pro-
posed a library of cryptographic primitives that can be efficiently proved in a SNARK. In
particular, the authors looked into proving an Elliptic Curve Diffie-Hellman (ECDH) key
exchange. They constructed a new elliptic curve to efficiently implement the operation
required in key exchanges, i.e. the scalar multiplication (cf. Fig. 2.4).

statement SNARK with
in a group of arithmed{polynomials proof of 4 pairing e:
prime order s [tisation| in F,.[X] the circulfs1 X G2 = Gr
over a field FF, #G; =r

elliptic curve Ey( BN curve Epn(F,)
of order 4s of prime order(7")

i

COCO: given r, search for a curve
Ey over IF,. of order 4 times a prime

Figure 2.4: Kosba et al. construction [KZM*15]

This curve defined over the scalar field IF,. of the BN curve, with the seed 0x44e992b44a69097f 1
from [BCTV14a|, was given in Montgomery form for further optimizing the arithmetic
inside a SNARK. The paper also mentioned converting this associated curve to Edwards
form in order to efficiently prove EADSA signatures. Following this work, the Zcash team
introduced the JubJub curve [ZCa21] which is a similar curve in twisted Edwards form
associated to BLLS12-381, alongside further algebraic optimizations. This curve allowed
Zcash to efficiently implement a collision-resistant variant of an EC-based Pedersen hash
inside a SNARK. Practitioners who proposed tailored elliptic curves for SNARKs (BN254,
BLS12-377, BLS24-315, BW6-761, BW6-633) each time also proposed an associated twisted
Edwards curve defined over the scalar field. Finally, Masson et al. [MSZ21]| performed an
exhaustive search of associated curves over BLLS12-381 with small Complex Multiplica-
tion discriminant in order to speed up the curve arithmetic using a fast endomorphism.
They found an isolated curve with discriminant D = —8, called Bandersnatch. A similar
associated curve is unlikely to be found for other SNARK curves of interest.

We stress that the problem solved in the COC@ construction is partway similar to
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the one solved in the Geppetto construction. Remember that in a proof composition, one
requires writing efficiently a pairing computation as a SNARK statement and to this end,
researchers came up with new elliptic curves that efficiently encode the pairing in the
SNARK (cf. Fig. 2.5). In COCQ, the SNARK curve is fixed (Egn(F,) of order r) and the
authors look for a curve (Ey(F,)) for the statement (ECDH). In Geppetto, the statement
is “the verification of a previously generated proof” and its curve is fixed (Egn(F),) of order
r) as it was already used to generate that previous proof. The authors look for a new
SNARK curve (BW6(F;) of order h - p) to prove “the proof composition” statement.

SNARK-1 with SNARK-2 with

a pairing e: frithme{polynomialsproof off a pairing e:
G1 x G2 = Grltisation| in F,[X] the circujG1 X G2 = Gr,
#G; =r #G;=p
pairing-friendly curve Epn(Fp) elliptic curve BW6(Fy)

of prime order r \ of order @

Geppetto: given p, search for a pairing-friendly curve
BW6 of order h - p over a field [,

Figure 2.5: Geppetto construction [CFHT 15]
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3

Elliptic curves for SNARKSs

In this chapter we investigate the use of elliptic curves in pairing-based SNARKs. We derive
new tailored constructions and focus on efficient arithmetic, particularly co-factor clearing
and subgroup membership testing. This chapter, in part, is a reprint of the material as it
appears in our published works [AEHG22] and [EHGP22].

3.1 Constructions

Pairing-based SNARKS can be instantiated with any secure pairing-friendly elliptic curve.
For efficiency, we require a fast arithmetic in F, (where r is the curve prime subgroup
order), in G; and in G, and a fast pairing computation. For security, we are interested in
the 128-bit security level in Gy, G, and Gr.

3.1.1 Efficiency

The Setup and Prove algorithms (Fig. 2.1) involve solving multiple large instances of tasks
about polynomial arithmetic in F,[X| and multi-scalar multiplication (MSM) over G; and
Go. The Verify algorithm (Fig. 2.1) involves computing a product of pairings and an
evaluation in Gr. Fast arithmetic in F,.[X], when manipulating large-degree polynomials,
is best implemented using the Fast Fourier Transform (FFT) [Pol71] and MSMs of large
sizes are best implemented using a variant of Pippenger’s algorithm [BDLO12, Section 4|
(cf. Chapter 5). For example, Table 4.21 reports the numbers of group operations (MSM)
required in the Setup, Prove and Verify algorithms in the [Grol6] SNARK and the KZG-
based PLONK universal SNARK [GWC19|. The report excludes the number of FFTs as
it changes from one implementation to another, but these usually consume less compute
time than group operations.

An efficient implementation of the FFT over F, requires » — 1 to split into small primes
or ideally to be divisible by a large power of 2. This narrows the search of pairing-friendly
elliptic curves to the ones with a subgroup order r such that 2 | r — 1 for a large integer
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Table 3.1: Cost of Setup, Prove and Verify algorithms for [Grol6] and PLONK. m =
number of wires, n = number of multiplication gates, a = number of addition gates and
¢ = number of public inputs. Mg = multiplication in G and P=pairing. Note: Both Groth16
and PLONK verifiers have a dependency on the number of public inputs ¢, but for PLONK
it is just a polynomial evaluation (FFT).

Setup Prove Verify

3n Mg, |Bn+m—4) Mg,| 3P

[Gr016] m Mg, n Mg, ¢ Mg,
dZnJra M(G1 2P

PLONK (KZG) 1 Mg, 9(n+a) Mg, 18 Mg,

L > 1. This was suggested first in [BCG*13| and yielded the GMV6-183 curve with
231 r — 1.

Recently, a new algorithm was proposed by Ben—Sasson et al. [BCKL21| that imple-
ments a variant of the FFT over non-smooth arbitrary fields F,, (ECFFT). However, this
algorithm suffers from two major drawbacks: finding an elliptic curve over F,, with a large
2L torsion and efficiently implementing the algorithm in the canonical basis. Since the new
algorithm is asymptotically much slower than the basic FFT over smooth fields, designing
a SNARK curve with smooth r — 1 remains the best approach.

This narrows the search to an elliptic curve with the following requirements:

(i) valid parameters: integers p,r,t (p(u),r(u) € N, t(u) € Z), prime p.

(ii) a subgroup order r such that 2% | » — 1 for a large integer L > 1,

(iii) a fast pairing,
)

(iv) a fast arithmetic in G, and
(v) a fast arithmetic in Go.

For KZG-based universal SNARKS, the last requirement can be dropped.

Elliptic curves proposed in the literature to suit SNARKs belong to one of the families
discussed in the preliminaries in section 1.3. Except for the Cocks-Pinch curve CP6-782,
all the curves are in families defined by polynomials. Condition (ii) becomes a congruence
condition on the seed z of the polynomial r(x) (cf. Table 3.2).

Pairing computations take place mainly in F,x and it is important to construct the F
tower such that the arithmetic is as efficient as possible. Pairing-friendly tower extensions
are built using a sequence of quadratic and cubic sub-extensions. The ideal way is to start
with an optimal quadratic extension F,2 = F,[u]/(u*+1) that arises when p = 3 mod 4. For
the discussed families, satisfying condition (iii) boils down then to satisfying a congruence
equation in the seed x alongside the previous congruence condition (cf. Table 3.2). Note that
even seeds allow an additional speedup in the pairing computation (final exponentiation)
for some families (e.g. BLS12 and BLS24 [GF16]). Finally, as is the custom in pairing-
based cryptography, the Miller loop scalar (e.g. u = t — 1 for BLS curves) should have
a small Hamming weight. For the curve families we are interested in, the optimal Miller
loop scalar is a low-degree polynomial in the seed z, hence we are additionally looking for
a sparse seed x in (signed) binary representation.

Condition (iv) is mainly related to the bitsize of p as the point coordinates are in F,.
The bitsize of p varies for each family and is constrained by the security. One requires r of
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about 256 bits, and each family has a fixed parameter p = log, p/log,r, 1 < p < 2, hence
p is usually (but not always) larger than r.

Except for KZG-based universal SNARKS, one requires also a fast arithmetic in Go.
As discussed in the preliminaries, the curves from Table 1.1 have a twist of degree d = 2, 4
or 6 and thus Gy is isomorphic to E'[r](F,./a) for an appropriate d-twist E'. Condition (v)
is immediately related to the choice of k and d (cf. Tab 3.2).

Congruence conditions on the seed x to achieve (ii).

The subgroup order r is given by an irreducible polynomial r(x) in Q[z]. Computing the
congruence conditions on o such that 2% | 7(zy) — 1 given L is equivalent to finding the
roots o of 7(z) — 1 modulo 2*. Because 2 is a prime, we define in Alg. 3.1 a Hensel-like
root-lifting technique inspired by [GS21, §A|, with auxiliary functions in Algs. 3.2 and 3.3.
For BN curves, one has r(z) — 1 = 6z(62® + 62 + 3z + 1). With 257" | 2, then
immediately 2% | 7 — 1. The other option is 2*7! | 62 + 622 + 32 + 1 and we run Alg. 3.1
(we were not able to derive a generic formula). Note that ged(p(z) — 1,7(z) — 1) = 6.
For BLS12 and BLS24 curves, ged(p(z) — 1,r(x) — 1) = = — 1. For BLS12, r(z) — 1 =
2?(2* — 1) and for BLS24, r(x) — 1 = z*(2* — 1) and the results of Table 3.2 follow. For
KSS16, we did not obtain a generic formula and we derived the condition for L = 64
in Table 3.2 with Alg. 3.1. Note that for curves with D = 1, p = 1 mod 4 is required
otherwise the curve would be supersingular. For KSS18 curves, Alg. 3.1 outputs another
congruence but p is always even in that case so we discarded it. For BN and KSS16
we picked L = 64 and obtained the conditions zy = 1y mod ¢ - 27! but for a smaller
Lo < L, the reduction 1o mod ¢ - 227! gives the answer. Algorithms 3.1, 3.2 and 3.3 are
implemented in SageMath at https://gitlab.inria.fr/tnfs-alpha/alpha, in the file
sage/tnfs/gen/generate_curve_utils.py.

3.1.2 Security

We look at the security of all the pairing-friendly families of the proposed curves both
from a generic point of view (TNFS attack) and a SNARK-specific point of view (Cheon’s
attack).

TNFS attack.

In 2015, [BGK15] revisited the Tower-NFS algorithm (TNFS) to compute discrete log-
arithms in [Fx. Then in 2016, Kim with Barbulescu combined it with other variants of
NFS and exploited the extension fields to improve the TNFS algorithm. This resulted in
an expected asymptotic complexity Lo(a,c) = exp((c+ o(1))(log Q)*(loglog @)'~*) to
be Ly (1/3,(48/9)"/% a 1.747) instead of L,x(1/3,(96/9)"/* ~ 2.201) with the NFS-HD
algorithm of [BGGM15]. More important, the complexity of TNFS is lower than the gen-
eral NFS algorithm in prime fields: L, (1/3, (64/9)"* ~ 1.923). The key-sizes should be
enlarged, and several papers deal with security estimates of TNFS [MSS16,BD19, GS21,
Gui20, DGP20]. However these papers estimate the security level, but they do not scale
with respect to a record computation. This is not yet possible as the first record computa-
tion with the TNFS algorithm was published after them, in [DGP21]: it runs the TNFS

For GMV6 and KSS18, one needs to construct respectively the Fpe and IF,1s towers starting from IF,,s.
In this case, one looks for the smaller cubic non-residue in F,,.


https://gitlab.inria.fr/tnfs-alpha/alpha
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Family, (i) (17) (i) p=3| (v) Gy
rp€eN, teZ r =1 mod 2% mod 4 | coord. in
BN z = 2570880382155688433 mod 2% = 2% | r — 1 v F 2
any r=0mod 2t =2l |r—1, 2L |p—1 X
BLS12 r=1mod3- 2"t =2l |r—1 27 p—1 X
r=1 r=2"'—1mod3 -2 =2l |r—-1,6|p—1 v F2
mod 3 r=22mod 3. 22 = 2L |r—1,6|p—1 v
BLS24 r=1mod3-2F2 =2 [r—1 282 |p—1 X
r=1 r=2'-1mod3 - 282 =21 |r—-1,6|p—1 v F s
mod 3 r=24mod 3.2 =2l |r—1,6|p—1 v
MNT4, t =2 +1 r=0mod 2" =28 |r— 1,282 p—1 X F 2
MNT6 r=0mod 2" 1 =28 |r —1,22F | p—1 X F s
GMVG(h = 4) r=0mod 2" =28 |r—1, 27 | p—1 NA! e
any x
KSS16 +14398186520986421885, +37456616613123361405
(z = +25 mod 70) mod 35-2% = 2% |y — 1, p=1mod 4 X By
KS518 r=14-2"3mod 42 283 = 2L | —1, 12|p—1| NA! Fs

(x = 14 mod 42)

Table 3.2: Conditions (i), (ii), (iii), and (v) for Table 1.1 families. For BN curves with
p = 3 mod 4 and KSS16 curves, it was not possible to obtain a general rule. The residue of
x mod 2 is computed by Alg. 3.1 with input L = 64 but any L can be given. For KSS18
curves, the other residues = do not give a prime p. Condition (iii) is not possible.

Algorithm 3.1: Congruence conditions on the seed z to achieve (ii)
Input: polynomial s(z) € Q[x], modulus m and congruence conditions {a; };>o such that
zo = a; mod m = s(xy) € Z, prime integer ¢, integer L > 0
Output: Residues u;, integers L; and moduli m; s.t. for all z; = u; mod m;, s(z;) € Z
and s(z;) = 0mod ¢4, L; > L

for a; € {ai}izoi

si(x) < s(m - x + a;) € Z[z] (this ensure that s;(x) has integer coefficients)
v; +— valuation,(content(s;(x)))

si(x) < s;i(x) /0"

for r; € Z/VZ a simple root of s;(x) modulo {:

L liftN(Tj)

(uj,m;, L;) < 1ift_simple root(s;,r;,a; +r;-m,m-{, 14+ v;, ¢, L)
S = SU{(uj,m;, Lj)}
for r; € Z/VZ a multiple root of s;(x) modulo ¢:

T < liftN(Tj)

Sj < 1lift_multiple_root(s;rj,a; +1;-m,m-{,14+v;,( L)

S+ SUS;
return S
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Algorithm 3.2: Hensel lifting of simple roots

Input: polynomial s;(x) € Z[z], modulus m;, residue u; mod m;, root r; € N
s.t. s;(r;) = 0 mod ¢, prime integer ¢, integers L; and bound L > 0

Output: Residue u;, integer L; and modulus m; s.t. for all z; = u; mod m;;,

si(z;) = 0 mod ¢4~ ti

1 def lift_simple_root(s;, 1, u;, mi, L;, ¢, L):

2 while L; < L:

3 si(x) <= s;(0-x +1;) /L

5 7; <= ootz ez (si()) #(by Hensel, a simple root lifts to one root only)

6 w; < u; + lifty () - my

7 m,; < -my;

8 return (u;, m;, L;)

Algorithm 3.3: Hensel lifting of multiple roots
Input: polynomial s;(z) € Q[z], modulus m;, residue u; mod m;, multiple root r; mod ¢,
prime integer ¢, integer L; and bound L > 0
Output: Residues u;, integers L; and moduli m; s.t. for all z; = u; mod m;,
si(z;) = 0 mod ¢Xi—Li

1 def lift_multiple_root(s;,r;, u;, m;, L;, 0, L):

2 S <« [(sq, 7, u;, my, L;)] a linked list

3 R+ {}

4 while S is not empty:

5 (84,74, wi, my, L;) < pop(S)

6 si(x) <= s;(0-x+1;) /L

7 v; < valuation,(content(s;(z)))

8 si(x) « si(z) /0"

10 if L, > L:
11 R <+ RU{(u;,m;, L;)}
12 else:
13 for r; € Z/UZ a simple root of s;(x) modulo :
14 i < lifty(r;)
15 (uj,mj, L;) < 1ift_simple root(s;,r;, uw; + ;- m;,m; -, L; (, L)
16 R+ RU{(uj,m;,L;)}
17 for r; € Z/UZ a multiple root of s;(x) modulo ¢:
18 ri < liftn(r;)
19 S <—append(S, (s;, 73, w; + r; - mi,my; - £, L;))

return R

N
[=)
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Table 3.3: Security level estimates of MNT curves from [Gui21|, and of the GMV curve
obtained with the software from [GS21].

r P ¥ | DL cost
curve | & b vet bits | bits | bits | in F
MNT4-298 | 4 | 614144978799019 | [BCTV1da] | 298 | 298 | 1192 | 27"
MNT6-298 | 6 | 614144978799019 | [BCTV14a] | 298 | 298 | 1788 | 2%
MNT4-753 | 4 | 241873351932854907 | [BCTV14a] | 753 | 753 | 3012 | 2'°
MNT6-753 | 6 | 241873351932854907 | [BCTV14a] | 753 | 753 | 4517 | 217
MNT4-992 | 4 95718723 [Gui21] | 992 | 992 | 3966 | 2'*°
MNT6-992 | 6 95718723 [Gui21] | 992 | 992 | 5948 | 2'%°
| GMV6-183 [ 6 | 21048712401 | [BCG'13] | 181 [ 183 [ 1093 | 2" |

in a field F,6 but new security estimates are not extrapolated. In Table 3.3 we reproduce
the key-sizes from [GS21, Gui2l|.

For pairing-friendly curves with parameters given by polynomials evaluated at some
seed, the Special-TNFS algorithm applies. It exploits the special form of the prime p,
resulting in an asymptotic complexity of L, (1/3,(32/9)"/* ~ 1.526) in the most favorable
case. It means that compared to prime fields F,, the total size klog p should be twice as
large to ensure the same level of security: klogp = 2logq. For MNT and GMV curves, p
is given by a quadratic polynomial and the special variant of TNF'S is not better than the
generic methods (the degree of p(x) should be at least 3 to make a difference). For the
GMV6 given in Table 1.1 (parameters in bold), a change of variables v = —26x — 3 gives
tw)=v+1,7r() = (v* —v+1)/13 and p(v) = 4r(v) +t(v) — 1 = (40* + v +4) /13 with
smaller coefficients. We can reasonably assume that the sizes required for GMV6 curves
are the same as for MNT6 curves. Such sizes were given in [Gui2l, § MNT Curves|. We
run the SageMath code of [GS21] and obtain a security estimate of 71 bits in GF(p®) for
the GMVG6 curve (Table 3.3). Security levels for BLS12-377, CP6-782 and BW6-761 were
provided in [EHG20, § C]| (Table 3.4).

Cheon’s attack.

Cheon [Chel0] showed that given G, [7]G and [r"]G, with G' a point in a subgroup G
of order r with T | r — 1, it is possible to recover 7 in 2([1/(r — 1)/T] + [VT]) x
(Expg(7) 4 log r x Compg;) where Exp(r) stands for the cost of one exponentiation in G by
a positive integer less than 7 and Comp, for the cost to determine if two elements are equal
in G. According to [Chel0O, Theorem 2|, if T < /3 then the complexity of the attack
is about O(4/7/T) exponentiation by using O(1/r/T) storage. Sakemi et al. reported an
implementation on a 160-bit elliptic curve in [SHIT12].

In SNARKSs such as [Grol6| and KZG-based schemes, the Setup keys include elements
{7}2,]G € G where T € N* is at least the size of the arithmetic circuit related to the
statement to prove, and 7 is the secret trapdoor. The property T |  — 1 also holds since
we need r — 1 to be highly 2-adic (condition (ii)). So, given these auxiliary inputs, an
attacker can recover the secret using Cheon’s algorithm in time O(4/7/T), hence breaking
the SNARK soundness. We stress that this attack vector is not inherent to the curve
design but to the SNARK design. Given a curve where r = 1 mod 2 used in a SNARK
requiring a setup of size 2&° where L' < L, Cheon’s attack runs in O(y/r/L’) and not
O(+/r/L). To the best of our knowledge, the Filecoin circuit (Lg, = 28, Lg, = 27) is the
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Table 3.4: Security level estimates of BLS curves, CP6-782, BW6 and CPS8, CP12
curves from [EHG20, EHG22|, with seeds wug;; = 0x8508c00000000001, ugrg =
0x9b04000000000001, g5 = —OxbfcfffEf, ug; = 0xe19c0001.
r P pF | DL cost
bits | bits | bits in Fx
[BCGT20] 253 | 377 | 4521 | 2©F
[EHG22, Tab. 9] | 254 | 379 | 4537 | 2'%°
[EHG22, Tab. 10] | 253 | 315 | 7543 | 2'%
[EHG22, Tab. 10] | 255 | 317 | 7599 | 2%
outer curve with a BLS12 curve
CP6-782, uz;; | 6 | 339 [BCGT20] 377 | 782 [ 4691 | 218
BW6-761, us; | 6 | 3 [EHG20] 377 | 761 | 4566 | 2'F
BW6-764, uzrg | 6 | 3 | [EHG22, Tab. 11] | 379 | 764 | 4584 | 2'%
outer curves with the BLS24-315 curve
BW6-633, us;s | 6 | 3 | [EHG22, Tab. 11] | 315 | 633 | 3798 | 2™*
BW6-672, us;s | 6 | 3 | [EHG22, Tab. 11] | 315 | 672 | 4032 | 2'*
CP8-632, ug;5 | 8 | 4 [EHG22, Tab. 7] | 315 | 632 | 5056 | 2'°
CP12-630, ugy5 | 12| 3 [EHG22, Tab. 7| | 315 | 630 | 7560 | 2%

curve k ref

BLS12-377, ugrr | 12
BLS12-379, g7 | 12
BLS24—315, U315 24
BLS24—317, Us17 24

www wl T

Table 3.5: Security level estimates of BN curves and outer curves with the software shipped
with [GS21].

r P p® | DL cost

curve koD ref bits | bits | bits | in [
BN-256 u = 1868033 Pinocchio 12| 3 | [PHGRI13] | 256 | 256 | 3063 | 2'%
BN-254 v = 22 — 2°* + 2% Pantry 12| 3 | [BFR"13] | 256 | 256 | 3038 | 202
BN-254 u = —(2%% + 2°° 4 1) Geppetto 12 | 3 | [CFH'15] | 254 | 254 | 3038 | 2102
BN-254 u = 0x44e992b442a6909f1 Ethereum | 12 | 3 | [BCTV14b] | 254 | 254 | 3044 | 2'*

outer curve with the Geppetto BN curve

BW6-509 | 6 | 3] [CFH"15] [ 254 509 | 3051 [ 2™
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Table 3.6: Properties of SNARK curves from the literature.

Curve ;C | (:bfs;Gl %)1% pIZIji,t 5)}2 r}; OEd %1 sec(lérlity IF(;:ts)
- 3
[ 51?@??3] szgg?ggf ) 15 51 256 | 256 | 512 v 128 103
[Eggfffg] HW22-N1;(26xi22) _ o 45| 254 | 254 | 508 X 127 102
ﬁﬁ?&ﬁ OX8G§$\;§’Z§226_152‘;4201060000 31| 181 | 183 | 549 | NA? 90 71
[BBCI\IT_%b] ﬁ@éfiiifé’j‘féj’of;? 28| 254 | 254 | 508 | v | 127 103
B?S;V%ffll _OXdQEi;?g?f%loooo 29 955 281 62 p o7 126

biggest application circuit of public interest.

While taking into account this attack at the curve design level might limit the attack
vector, this prevents a nice speed up in the pairing computation. As we observed in [EHG22],
having a large L s.t. 7(z) = 1 mod 2¥ is often entangled to having a large number of
consecutive zeroes in the seed x. This allows mixing efficiently the Karabina [Karl3|
and Granger-Scott [GS10] cyclotomic squaring algorithms, hence speeding up significantly
the final exponentiation. That is said, Cheon’s attack must be taken into account when
implementing a SNARK circuit with a given elliptic curve.

3.1.3 Examples

In Table 3.6, we recall the literature curves presented in the state-of-the-art section 2.2
and summarize their SNARK-friendliness properties and security levels.

We see that only the BLS12-381 satisfies conditions (ii), (iii), (iv), (v) and has almost
a 128-bit security level. KSS16 and KSS18 families were not investigated in the SNARK
literature. We considered the BLS24 family in [EHG22| in the context of 2-chains, hence
the proposed BLS24-315 does not satisfy the condition (iii) by definition. In table 3.7, we
propose new BN and BLS24 that satisfy all the requirements. We also propose the first
KSS16 and KSS18 SNARK curves and compare them to the existing curves. We omit
to revisit the GMV6 family as a 128-bit secure curve would be defined over a large field
(around 704 bits).

KSS16 and KSS18. The KSS family was not investigated previously in the SNARK
context. KSS16 and KSS18 defined respectively over fields of size 328-bit and 348-bit offer
128 bits of security. We suggest in [AEHG22] the KSS16-329 and KSS18-345 that fulfill
all conditions except p = 3 mod 4 (condition (iii) does not apply to KSS18 and is not
possible for KSS16).

BLS24. We previously investigated in [EHG22| the BLS family with embedding degree
k = 24 in the recursive SNARK context. However, we only considered in that paper lifting

2For GMV6-183, 3 is the smallest cubic non-residue on Fp.
3For KSS18-345, 2 is the smallest cubic non-residue on F,,.
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Curve x L (bits) | (bits) | (bits) | mod 4 Gy

0x49e69d16£dc80216226909f1

BN383 HWo o (62 1 2) — 30 44| 383 | 383 | 766 v 191

BLS24-317 H\?V’Zﬁf;f;oi(i 60| 255 | 317 | 1268 v 127 160
KSS16-329 ?;‘sféa)bf’f; 19 255 | 329 | 1316 v 127 140
KSS18-345 OXE%;‘&;’?%OO 78 254 | 345 | 690 | NA3 | 127 150

Table 3.7: New SNARK curves from the BN, BLLS24, KSS16 and KSS18 families.

of simple roots and proposed the BLS24-315 curve with 2% | » — 1. In [AEHG22| we
consider multiple roots (cf. 3.3) and propose the BLS24-317 curve with 2°° | » — 1 that
fulfills all SNARK-friendliness conditions. This curve is particularly suitable for KZG-
based SNARKSs compared to previous known curves. As a reference example, compared
to the widely used BLS12-381, it takes 14% less time to generate a PLONK proof of a
circuit of 40000 constraints (implemented in gnark [BPH"22al). The setup generation is
also 23% faster but the verification is 30% slower, although this can be likely amortized
with a batch verification. The verification overhead in BLS24 is due to the cost of F 24
arithmetic in the pairing computation. However, this can be somewhat reduced using a
2"-tuple-and-add Miller loop following [CBGW10|, which we have not implemented in
gnark-crypto yet at the time of writing.

3.2 Efficient arithmetic

In this section, we focus on two important cryptographic operations: Hashing to an elliptic
curve and subgroup membership. These optimizations work for a wide range of elliptic
curves including in particular SNARK-friendly curves. Hash from a (random) string to
a point on the elliptic curve is an important cryptographic operation. It has two steps:
first mapping a string to a point P(x,y) on the curve, then multiplying the point by the
cofactor so that it falls into the cryptographic subgroup. For the first step, there is the
efficient Elligator function for curves with j-invariant not 0 nor 1728 and having a point of
order 4. For other curves including BLS curves of j-invariant 0, Wahby and Boneh propose
an efficient map in [WB19|. Because the BLS12-381 curve is not of prime order, the point
is multiplied by the cofactor ¢; to ensure the hash function to map into the cryptographic
subgroup of 255-bit prime order. Wahby and Boneh wrote in [WB19] that it is sufficient to
multiply by (z — 1), instead of the cofactor (x — 1)?/3. They observed that for any prime
factor £ of (x — 1), the BLS12-381 curve has no point of order £2. We prove this trick and
show that it works for a wide range of elliptic curves.

Another important operation is to test whether a given point belongs to the right
subgroup of order 7, i.e. Gy, Gy or G7. This is a crucial operation to avoid small subgroups
attacks. This test can be done much faster if an efficient endomorphism is available, which
is usually the case for pairing-friendly curves.

r=4#G, | p, G, | p¥ Gy | p= security (bits)
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3.2.1 Faster co-factor clearing

Let Endy, (&) denote the ring of F;,-endomorphisms of , let O denotes a complex quadratic
order of the ring of integers of a complex quadratic number field, and O(A) denotes the
complex quadratic order of discriminant A.

Theorem 3.1 ( [Sch87, Proposition 3.7|). Let E be an elliptic curve over F, and n € Z>;
with p{n. Let m, denote the Frobenius endomorphism of E of trace t. Then,

n® | #E(F,),
En| C E(F,) < " |p—1 and

t?—4
T € Z or O P

2

) C Endy, (E).

n

In [EHGP22|, we apply this theorem to the polynomial families of the taxonomy paper
of Freeman, Scott and Teske [FST10|. The families are designed for specific discriminants
D = 1 for constructions 6.2, 6.3 and 6.4, D = 3 for construction 6.6 and some of the
KSS families, D = 2 for construction 6.7. First we identify a common cofactor within the
family which has a square factor, then we compute its gcd with p(z) — 1 and y(z). We
summarize our results in the following tables and provide a SageMath verification script
at https://gitlab.inria.fr/zk-curves/cofactor.

Construction 6.6

The family of pairing-friendly BLS curves appeared in [BLS03|. A BLS curve can have an
embedding degree k£ multiple of 3 but not 18. Common examples are k = 9,12, 15,24, 27, 48.
A generalization was given in [FST10| and named Construction 6.6. Let k& be a positive
integer with & < 1000 and 18 { k. Construction 6.6 is given in Table 3.8. Then (¢,r,p)
parameterizes a complete family of pairing-friendly curves with embedding degree k and
discriminant 3. Next, in Table 3.9, we compute the cofactor polynomial ¢;(z) for Con-
struction 6.6 family. We recall that y(x) satisfies the Complex Multiplication equation
4p(z) = t(z)? + Dy(x)®. To prove the results of Table 3.9, we will need some basic
polynomial results that we prove in Lemmas 3.1, 3.2, 3.3, and 3.4.

Lemma 3.1. Over the field of rationals Q, ®4(x) denotes the d-th cyclotomic polynomial,
and for all the distinct divisors d of n including 1 and n,

2" —1 =[] ®alz) . (3.1)

din
Lemma 3.2. For any odd k > 1 not multiple of 3 (k= 1,5 mod 6), we have
? —x+ 1|2 —ah 1 (3.2)

Proof (of Lemma 3.2). By Lemma 3.1, 2% — 1 is a multiple of ®; =z — 1, ) = . + 1,
Py =22+ 2+ 1 and &g = 2° — z + 1. Since

2% 1= - 1)@+ 1) = (" - 1)@ + 2"+ 1)@+ 1) (@ - 2"+ 1)

and ®,®5 | 2°* — 1 but &g { ¥ — 1 because k is odd, nor ¥ + 1 because & is not multiple
of 3, then ®5 = 22 — x + 1 should divide the other term z** — z* + 1. n
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Table 3.8: Construction 6.6 from [FST10, §6], formulas for £ = 9,15 mod 18 from ePrint.

k r(z) t(z) y(x) p(x) x mod 3
1 4+ 1)@ - 2"+ 1)/3
mod 6 (ka(x) —.Z'k+1 R | (_xk-i-l + 2.’Ek —r— 1)/3 ( ) (_:C2k+1 )/ 2
2 k/24+1 k/2+1 k/2 . (v — 1)2($k — b 4 1)/3
mod 6 Oy () | = r+1 (x + 22"+ —1)/3 gkt 1
3 k/3+1 k/3+1 k/3 (z° — 2+ 1)*(@™° — 2" +1)/3
mod 18 Doy () x +1 (—x +22° + 22 —1)/3 L k3t 2
9,15 x4 12223 — k3 4 1)/3—
mod 18 ¢2k(x) _l,k/SJrl +r+1 (—l'k/ngl + 21,’6/3 —r— 1)/3 ( ) ( $2k/3+1 )/ )
4 3 3 k/2 (2 — 12 (2F — 22+ 1)/3
mod 6 gy () z°+1 (x° = 1)(2z 1)/3 o 1
5 k+1 _k+1 k B (5’72 — T+ 1)(55% — 2+ 1)/3
mod 6 D () 41 (=" + 22" +2x—1)/3 gkt 2
0 B k6 (x —1)%(z*3 — 2% 4 1)/3
mod 6 Oy () r+1 (x —1)(2z 1)/3) i 1
Lemma 3.3. For any odd k > 1 such that (k =1 mod 6), we have
x4 1|d" —x4+1 and 2P—x+1|2M—22F 41 (3.3)
Proof (of Lemma 3.3). Let w,w € C be the two primitive 6-th roots of unity that are the
two roots of #2—z+1. Since k = 1 mod 6 and w® = @° = 1, then w* = w, T = T, W = W?
and @ =@% Then " —w+1=w?—w+1=0and T —T+1=w*-T+1=0.
Hence w,w are roots of ™' — z + 1 and 2% — = + 1 divides z**' — 2 4+ 1. Similarly,
Wt —20F 4w+ 1 =w? — 2w+ w4+ 1 =0 and the same holds for @. We conclude that
2? —x + 1 divides 2" — 22F + 2 + 1. O
Lemma 3.4. For any odd k > 1 such that (k =5 mod 6), we have
2 —r+ 1|2 —22F — 2+ 1. (3.4)
Proof (of Lemma 3.4). Let w,w € C be the two primitive 6-th roots of unity that are
the two roots of 22 — z 4 1. Similarly as in the proof of Lemma 3.3, since k = 5 mod 6
and w® = —1, w® = 1, then ' = 1, W* = w® = —w? Then W — 2w — 2w +1 =
Table 3.9: Cofactors of Construction 6.6 families
k p(z) +1—t(z) co() ged(co(x), p(z) — 1) | ged(co(x), y(x))
1 mod 6 (% — 2"+ D)(2* —2+1)/3 [ (2 -2z +1)%/3 2 —r+1 (2> —x+1)/3
2 mod 6 | (oF =24+ 1)@ +2+1)/3 | (2P +x+1)/3 1
3 mod 18 | (2?3 — 2 + 1)(2® — 2+ 1)*/3 | (2* — 2z + 1)?/3 1
9 mod 18 | (2®3 —2** + )(2®> —2+1)/3 | (2* —2+1)/3 1
15 mod 18 | (z%/% —2*® £ 1)(a? =24+ 1)/3 | (2* —x +1)?/3 1
4 mod 6 (2" — 2™ + 1) (2% — 1)%/3 (z* —1)%/3 | (z* —1)/3
5 mod 6 (2 — 2" + D(2? =2 +1)/3 | (2 —2+1)%/3 -z +1 (22 —2+1)/3
0 mod 6 (23 — 20 1 1) (z —1)?/3 (x —1)%/3 r—1 (x—1)/3




42 Part IT - SNARK-friendly elliptic curves

1 —2(—w?) — 2w+ 1 = 2w? — 2w + 2 = 0. The same holds for @, and we conclude that
2® — x4+ 1 divides 2" — 22" — 2z 4 1. O

Proof (of Table 3.9). For k =1 mod 6, one computes
(x+ 1)@ — 2"+ 1)/3 — 2% 41— (=" 424+ 1)

(x+ 122 — 2% +1)/3 — z(2® — 2% + 1)
(2% — 2" + D(2* =2 +1)/3 .

p(z) + 1 —t(z)

By Lemma 3.2, (z° —2-+1) divides 22* —2"+1 since k = 1 mod 6. Note that for z = 2 mod 3,
2> — x4+ 1 = 0 mod 3. Hence the cofactor is a multiple of cy(z) = (2> — x + 1)?/3. Next,
one computes

px) —1= (z+1)* @ —2"+1)/3 -2 -1
=(z2—z+1)+3z
=2 —z+ D)@* - 2" +1)/3+ 2@ — 2"+ 1) —2? -1
=2 —r+D(@* 2"+ 1)/3 - @~z +1)

and by Lemma 3.3, % — 2 + 1 divides 2" — 2 4+ 1. We computed the derivative of p(z) — 1
and checked that none of w,@ is a zero of the derivative. Finally, 2% — 2 + 1 divides p(z) — 1
with multiplicity one. To conclude, Lemma 3.3 ensures that (z* — 2 + 1) divides y(z), and
we checked that the derivative of y(z) does not vanish at a primitive sixth root of unity,
hence #* — z + 1 divides y(z) with multiplicity one.

For k£ = 2 mod 6, one computes

p(x) +1—t(z) =(x — 1)*(aF — 2" 4 1)/3 + 28 41 — @ —z 4 1)
=(2% =2z + 1)(aF — 22 4 1) /3 + 2 (a® — (2% + 1)
=z — 2?2 L D)2 + 2 +1)/3

Note that k is even. Lemma 3.2 will apply for &' = k/2 to be odd, that is k = 2 mod 12.
Nevertheless the cofactor ¢o(z) will not be a square. We checked that none of the primitive
cubic and sextic roots of unity are roots of p(x) — 1 nor y(x), hence the ged of ¢o(z) and
p(z) — 1, resp. y(x), is 1.

For k = 3 mod 18, it is straightforward to get p(z) + 1 — t(x) = (22 — z 4 1)?(2®*/3 —
2*3 1 1)/3, the cofactor co(z) = (z? — x + 1)?/3 is a square as for k = 1 mod 6. For
k =9,15 mod 18, we compute

(x + 1)2(x2k/3 — k4 1)/3 — AR g (—:z:k/3+1 +z+1)
(22 + 2z + 1) (@2 — 22 1 1) /3 — x(a®/® — 2F/3 1)
(22— + 1) (23 — 2*3 +1)/3

p(z) +1—t(x)

For k = 9 mod 18, k/3 is a multiple of 3 and 2> — 2 + 1 does not divide (22/3 — 2*/3 4 1),
while for & = 15 mod 18, k/3 is co-prime to 6, and (z**/* — 2*/3 + 1) is a multiple of
(z? — 2+ 1) by Lemma 3.2. For k = 3,9, 15 mod 18, we checked that neither p(x) — 1 nor
y(x) have a common factor with ¢q(x), and no faster co-factor clearing is available.

For k = 4,0 mod 6, the calculus is similar to the case K = 1 mod 6, and for k£ = 5 mod 6,
we use Lemma 3.4 to conclude about y(z). O
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For the cases k =2 mod 6 and k£ =9 mod 18, ¢;(x) has no square factor and thus the
cofactor clearing is already optimised. For k = 3, 15 mod 18, the cofactor is a square but
Theorem 3.1 does not apply. For all remaining cases, ¢;(x) = n(z)?/3 for some polynomial
factor n(x)/3 that satisfies Theorem 3.1. Hence, it is sufficient to multiply by n(x) to clear
the cofactor on Construction 6.6 curves. We summarize our results in Theorem 3.2.

Theorem 3.2. e For k = 1,5mod 6, the curve cofactor has a factor co(x) = (2* —

x+1)?/3, whose structure is Z./(x* — x4+ 1)/3Z x Z/(2* — x +1)Z, and it is enough
to multiply by n(x) to clear the co-factor co(x).

e Fork =4 mod 6, the curve cofactor has a factor co(z) = (2* —1)?/3, whose structure
is Z)(x® — 1)/3Z x Z)(x* — 1)Z, and it is enough to multiply by n(z) to clear the
co-factor co(x).

e For k = 0mod 6, the curve cofactor has a factor co(z) = (v —1)*/3, whose structure
is Z)(x — 1)/3Z x Z/(x — 1)Z, and it is enough to multiply by n(x) to clear the
co-factor co(x).

Proof (of Th. 3.2). From Table 3.9, k = 1,5 mod 6 has n(x) = (z*—2+1)/3, k = 4 mod 6
has n(z) = (2* —1)/3, k = 0mod 6 has n(z) = (z — 1)/3 where n(z) satisfies the
conditions of Th. 3.1. The n-torsion is [F,-rational, that is E[n] C E(F,) and has structure
Z/nZ x Z/nZ over F,. Taking into account the co-factor 3, the structure of the subgroup
of order ¢y(z) = 3n*(z) is Z/3nZ x Z/nZ and multiplying by 3n(x) clears the cofactor. [

Example 3.1. In [CDS20/, Clarisse, Duquesne and Sanders introduced two new pairing-
friendly curves with optimal Gy, the curves BW13-P310 with seed w = —0x8b0 and BW19-
P286 with seed v = —0x91. They fall in Construction 6.6 with k = 1 mod 6. Our faster
co-factor clearing method applies.

For BW13-P310, the prime subgroup order is r = ®g.13(u) = (u* —u'®+1)/(u* —u+1).
The cofactor is (u® —u +1)*/3, where (u* —u + 1) divides p(u) — 1 and (u* —u +1)/3
divides y(u). It is enough to multiply by (u> —u + 1) to clear the cofactor.

For BW19-P286, the prime subgroup order is r = ®g.19(v) = (v** =0 +1)/(v* —v+1).
The cofactor is (v — v + 1)?/3, where (v — v + 1) divides p(v) — 1 and (v* — v +1)/3
divides y(v). It is enough to multiply by (v? — v + 1) to clear the cofactor.

Subgroup Security, Distortion Map. Theorem 3.1 applied to BLS curves tells us
that the curve endomorphism ¢: £ — E, (x,y) — (wz,y) with w € F, a primitive third
root of unity (w? +w + 1 = 0 mod p) acts as a distortion map on E[n] ~ Z/nZ ® Z/nZ.
With a Weil pairing ey, one can embed a discrete logarithm on E(F,)[n] into Fy, where
sub-exponential DL computation takes place, although the much larger size of p compared
to n seems prohibitive. For G, P € FIn| in the same subgroup of order n, log,(P) =
1Oa‘%eW(G,qu)) ew (P, ¢(Q)).
The definition of subgroup security in [BCM*15] is the following.

Definition 3.1 (Subgroup Security, [BCM ™15, Definition 1]). Let p(u), t(u),r(u) € Q[u]
parameterize a family of ordinary pairing-friendly elliptic curves, and for any particular
ug € Z such that p = p(ug) and r = r(ug) are prime, let E be the resulting pairing-friendly
elliptic curve over F, of order divisible by r. Let hy = #E(F,)/r, hy = #E'(Fya)/r
and hy = ®i(p)/r. We say that E is subgroup-secure if all Q[u]-irreducible factors of
hi(u), ho(u) and hr(u) that can represent primes and that have degree at least that of r(u),
contain no prime factors smaller than r(ug) € Z when evaluated at u = uy.
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If ¢y = (v—1)/3 is prime, since the structure of the subgroup of order ¢ is Z/coZSZ/ ¢y Z,
and the subgroup is fully defined over the prime field F,, one can find a basis (P, P») so
that Py, P, are of order ¢y and linearly independent. Moreover there exists a distortion map
) from the subgroup (P;) to (P,). The distortion map 1 is given by (x,y) — (wx,y) where
w € T, is such that w? +w +1 = 0. (See [Cha06] on distortion maps on embedding degree
1 curves). Because of this distortion map, one can transfer as in the MOV attack a discrete
logarithm computation in the subgroup of order (z —1)/3 of E(F,) to a discrete logarithm
computation in the subgroup of order (x — 1)/3 of F, (note that this is the base field
[Fp,, not the extension field F,x), where sub-exponential DL computation takes place. The

DL computation in F, has complexity exp((l +0(1))y/Inplnin p) with the quadratic

sieve, and exp<(1.923 + 0(1))v/In p(In In p)?

> with the number field sieve. Because the

complexity is in p not ¢y, the computation will be slower, nevertheless it exists. In practice,
if an implementation of a generic DL computation algorithm like Pollard-p is faster in [,
than on E(IF,) for the subgroup of order (z—1)/3, it is possible to transfer the computation
from the curve to the finite field thanks to the distortion map and a Weil pairing.

Constructions 6.2, 6.3, 6.4, and 6.5 with D =1

The constructions with numbers 6.2 to 6.5 have discriminant D = 1, we report the
polynomial forms of the parameters in Table 3.10. The cofactor ¢;(z) in p(z) + 1 —t(z) =
r(z)cy(x) has always a factor ¢y(z) that we report in Table 3.11, with special cases for
k =2 and k = 4. For p(z) to be an integer, z = 1 mod 2 is required, except for 6.5 where
x is required to be even.

Table 3.10: Constructions 6.2, 6.3, 6.4, and 6.5 from [FST10, §6|

k r(z) t(x) y(x) p(z)
6.2 | 1 mod 2 | ®yp(x) —2? +1 eF(2® + 1) | (@ 4227 o 42t 207 1 1) /4
6.3 | 2 mod 4 | Pop(z) v? + 1 2222 - 1) | (@t -2 bt 227+ 1)/4
6.4 | 4 mod 8 | ®p(x) x+1 oAz — 1) | (M2 =22k L k2 g 00 1) /4
65| k=10 | Poo(z) | 2 +a* — 2+ 2| 23(@® —1) | (@2 — 2" + 2% — 52° + 52* — 42® +4)/4

Table 3.11: Cofactors of Constructions 6.2, 6.3, 6.4, and 6.5. Note that x = 1 mod 2 except
for 6.5 where x = 0 mod 2.

k co() ged(co(x), p(x) — 1) | ged(co(2), y(z))
6.2 1 mod 2 (% +1)%/4 27+ 1 z° + 1
6.3 =2 (z* —1)%/2 r? -1 r? -1
6.3|2mod4, k>2|(2* —1)*(2*+1)/4 -1 r? -1
6.4 k=4 (x —1)%/2 r—1 r—1
6.4|4mod8, k>4 | (r—1)*(2*+1)/4 r—1 r—1
6.5 k=10 zt /4 7 7’

Lemma 3.5. For any odd k > 1 we have

Explicitly,

el =P+ D)1 -2+t — o+

L S [

L x2k—2) '
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Proof. By Lemma 3.1, 2** — 1 is a multiple of ®; =2 — 1, &y =z + 1 and &, = 2° + 1.
Since % — 1 = (2 — 1)(2* + 1) and ®,®, | 2% — 1 but &, { ** — 1 because k is odd,
then ®, = 22 + 1 should divide the other term z2* + 1. O

Proof (of Table 3.11). All families of constructions 6.2 to 6.5 have j-invariant 1728, an a
point of order 2 (their order is even).

In Construction 6.2 one has k odd. One gets p(z) + 1 — t(z) = (z* + 1)*(2* 4+ 1)/4,
and by Lemma 3.5, 2° + 1 is a factor of 22* 4 1, hence ¢(z) = (2% 4 1)® /4 which is even,
divides p(z) + 1 — t(z). The factorization of p(z) — 1 is

p(z) =

v (2 +1)" + ( —1H/4-1

(2" +22° + 1)z + (2* — 222 +1) — 4) /4

(' — Da®* + (222 + 2)2®* + (2" — 1) — 222 — 2)/4
(¢ = D@ + 1)+ 2(2* + (@™ — 1)) /4

2t — 1) (2% + 1 + 2a(x))/4 where

(
(
(
(
(

a(l’) I(l’2k—1)/($2—1):1+l’2+$4+. 2k 2 me
and by Lemma 3.1, 2% — 1 is a multiple of 22 — 1 = ®,®,, and (2* — 1)/2 divides p(z) — 1.
More precisely, because z is odd, 4 | p(x) — 1, and

p(z) —1=2(*+1)(z* - 1)/%£x2k +1+2a(x))/2 .

J

Vv Vo
even EZ €L

As a consequence, 2 + 1 divides p(z) — 1. Finally, y(z) = 2"(2? + 1) is a multiple of 2% + 1.

We isolate the case k = 2 in Construction 6.3, with parameters r(r) = ®4(r) = 2> + 1
(even), t(z) = 2® 4+ 1, y(z) = 2(2® — 1), p(z) = (2% —2* +32° +1)/4, p(x) + 1 —t(x) = (2*+
1)(22—1)*/4. We set r(x) = (2°+1)/2 and ¢ (z) = (2*—1)?/2, p(x)—1 = (2*—1)(x*+3) /4
where (2 + 3)/4 is an integer. For larger k = 2 mod 4, one has

(2" — 2272 ok 42t 207 4 1) /441 — (22 4+ 1)
(z%(@® — 12+ (2® +1)® — 427) /4
(2" +1)(2? — 1)/4

and since k is even, by Lemma 3.5, #% + 1 divides 2" 4 1, hence co(x) = (2> + 1) (2> — 1)?/4
divides the curve order. We compute p(z) — 1 and factor it:

p(z) +1—t(x)

pla) =1 =(z"(2® = 1)° + (a* +1)*) /4~ 1
=(2"(2® = 1) + (2® = 1)* + 42® — 4) /4
—(2? — 1)(2" (2 = 1)+ 22 — 1 +4)/4

mult. of 4 mult. of 4

which proves that 22 — 1 divides p(z) — 1. Because y(z) = 2*/?(z® — 1), it is obvious that
z® — 1 divides y(z).

With Construction 6.4, £k = 4 mod 8. First k = 4 is a special case where the curve order
is p(z)+1—t(z) = (x —1)*(2* +1)/4, the cofactor is co(r) = (z —1)*/2, r(x) = (z*+1)/2,
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p(z) — 1= (2% —1)(2® — 22 + 3) /4 factors as p(x) — 1 = (z — 1)(z + 1)/2(2® — 22 + 3) /2,
and y(x) = x(z — 1).
For larger k, we compute, with p(z) = (z"?(z — 1)? + (z + 1)%)/4,

p(z) +1—t(z) (mk/2(x—1)2+(:1:+1)2)/4+1—(:E~|—1)
—(2"?(x =12 + 2?4 20 +1 —4x)/4
=@z =1+ (x—1)%)/4
=(x — I)Q(xk/2+1)/4

and because k = 4 mod 8, k/2 is even and by Lemma 3.5, 22 + 1 divides 2*/2 4 1, hence
co(r) = (v — 1)*(2® 4+ 1) /4 divides the curve order. Now we compute p(x) — 1 and obtain
the factorisation

4+ (z+1))/4-1
P +a® —2x+1+4x—4)/4
Y4 (z—1)2+4(x—-1))/4

-
mult. of 4

hence = — 1 divides p(z) — 1. Finally y(z) = 2**(z — 1) and (z — 1) divides y(x).

For construction 6.5, = is even this time, the curve order is p(x) + 1 —t(z) = x*/4(z® —
2t —2? + 1), y(w) =23 (2* - 1), p(x) — 1 = 2* (2" — 2%+ 2° — 52 + 52 — 4) /4 were
the factor (z'® — 2® + 2% — 52 + 52 — 4) /4 is an integer whenever z is even. O

From Table 3.11 and Theorem 3.1, we obtain Theorem 3.3.

Theorem 3.3. e For construction 6.2, the curve cofactor has a factor co(z) = (z* +
1) /4, whose structure is Z./(z*+1) /2Zx Z./ (x* +1)* /27, and it is enough to multiply
by n(z) to clear the co-factor co(x).

e For construction 6.3, the curve cofactor has a factor co(x) = (2* — 1)*(z* + 1)/4,
whose structure is Z.)(x* — 1)/27 x Z./((z* — 1)(2* + 1)/2Z, and it is enough to
multiply by n(x) to clear the co-factor co(x).

e For construction 6.4, the curve cofactor has a factor co(z) = (x — 1)*(2* + 1)/4,
whose structure is Z./(x — 1) /27 x 7./ (x — 1) (2> +1) /27Z, and it is enough to multiply
by n(x) to clear the co-factor co(x).

e For construction 6.5, the curve order has cofactor co(x) = x*/4, whose structure is
7] )27 x 7.)x* |27, and it is enough to multiply by n(x) to clear the cofactor.

Construction 6.7 with D =2

Construction 6.7 in [FST10] has discriminant D = 2. We report the polynomial forms
of the parameters in Table 3.12. The cofactor ¢;(z) in p(z) + 1 — t(x) = r(z)c1(x) has
always a factor ¢y(z) that we report in Table 3.13. For p(z) to be an integer, z = 1 mod 2
is required, and x = 1 mod 4 for £ = 0 mod 24.
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Table 3.12: Construction 6.7 from [FST10, §6].
6.7, k =0mod 3, ¢ =lem(8, k)

r(z) = @)

t(z)= z* 41

y(az) _ (1 . xﬂ/k)<x5f/24 + lj/8 . x€/24>/2

p(x) _ (2(x£/k + 1)2 + (1 o $€/k)2(x5£/24 + :L,K/S . $£/24)2)/8

Table 3.13: Cofactor of Construction 6.7. Note that x = 1 mod 2, except for k = 0 mod 24,

where £ = 1 mod 4.
k co(T) ged(co(z), p(z) — 1) | ged(co(x), y(x))
6.7 | 0 mod 3 | (z/* —1)?/8 (% —1)/2 (% —1)/2

Proof (of Table 3.13). We compute

Uk 4

p(z) +1—t(x) =(2(27* + 1) + (1 = 2% (2% 4 2F — 22 8 41 — (2* + 1)
:(2(x£/k + )2 8$£/k (1 . xé/k)2<x6/24($4£/24 + x2£/24 . 1))2)/8
:(2<l‘€ 1)2 + ( Lk 1)2 6/12( £/6 + x£/12 . 1)2)/8
:(xé/k )2(xé/ ( l/6 + xé/lZ )2 + 2)/8

and for p(x) — 1 we obtain

p(l‘) 1 :(Q(xf/k + 1)2 — 8+ (xé/k' . 1)2<x£/12(xé/6 + xZ/12 . 1)2))/8
p(x) -1 :(Q(xﬂ/k _ 1)2 + &E(/k — 8+ (:L,Z/k _ 1)2(x£/12(x€/6 + xﬁ/l? _ 1)2))/8
plr) = 1 =@ — )8 + (@~ 1)(2+ 212" 4 22— 1)) 8
It is straightforward to see that (z%* —1)/2 divides y(z). O

From Table 3.13 and Theorem 3.1, we obtain Theorem 3.4.

Theorem 3.4. For construction 6.7, let { = lem(k,8). The curve cofactor has a factor
co(z) = (z% = 1)2/8, whose structure is Z./(z/* — 1)/AZ x Z)(z"* — 1)/2Z, and it is
enough to multiply by n(x) = (z'/* —1)/2 to clear the co-factor co(z).

Other constructions

We also investigated the KSS curves named Constructions 6.11, 6.12, 6.13, 6.14, 6.15
in [FST10], and the KSS-54 curve of 2018, but none of the cofactors is a square, and the
ged of the cofactor and p(z) —1, resp. y(z), is equal to 1. Hence our faster co-factor clearing
does not apply. We also briefly looked into the Aurifeuillean construction [SG18| for which
it dos not apply neither.

3.2.2 Faster subgroup membership testing

For completeness, we first state the previously known membership tests for G; [Sco21,
Bow19|. Then we show our results for Gy [EHG22|. Next, we show that the proof argument
for the G, test in [Sco21]| is incomplete and provide a fix and a generalization for both G,
and Go.

For the sequel, we recall that the curves of interest have a j-invariant 0 and are equipped
with efficient endomorphisms ¢ on G; and ¢ on G, (cf. Sec. 1.2).
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G; membership testing

Given a point P € E(F,), Scott [Sco2l, §6] proves by contradiction that for BLS12
curves it is sufficient to verify that ¢(P) = —u*P where —u? is the eigenvalue A of ¢. A
similar test was already proposed in a preprint by Bowe [Bow19, §3.2] for the BLS12-381:
(u® —1)/3)(2¢'(P) — P — ¢*(P)) — ¢”*(P) = O (where ¢ here is ¢*). This boils down
to exactly ¢(P) = —u*P using ¢*(P) + ¢(P) + P = O and > + A+ 1 = 0 mod r
(u* = u®> —1 mod r). However, the proof uses a tautological reasoning, as reproached by
Scott [Sco21, footnote p. 6], because it replaces AP by ¢(P) where P is a point yet to be

proven of order r.

G7 membership testing

Testing membership in Gy for candidate elements z of IF,» is done in two steps. First, one
checks that z belongs to the cyclotomic subgroup of F,: (subgroup of order ®;(p)), that
is 2% = 1. To avoid inversions, one multiplies the positive terms in p’ on one hand,
and the negative terms on the other hand, and check for equality: it costs only Frobenius
powers. With k = 6 and ®¢(p) = p® — p+ 1, it means checking that 2P = o, Second, we
propose to use a generalisation of Scott’s technique first developed for BN curves, where
r =p+1—1t[Scol3, §8.3]. In the BN case, the computation of z" is replaced by a Frobenius
power 2P and an exponentiation 2/, and the test 2’ = 2~1. BLS curves are not of prime
order, and we use Proposition 3.1.

Proposition 3.1. Let E be a pairing-friendly curve defined over IF,, of embedding degree
k w.r.t. the subgroup order r, and order #E(F,) =r-c=p+1—t. For z € F;k, we have
this alternative Gy membership testing:

220 =1 gnd 2P = 27V and ged(p+1—t,Pp(p)) =7 = 2" =1.

Proof. If 2%® =1 and zP*'~* = 1, then the order of z divides the ged of the exponents
ged(Pr(p), p+ 1 —t). If this ged is exactly r, then z is in the subgroup of order r, that is
Z2f=1. m

For example, BLS curves have c-r =p+ 1 —t = p — u hence
p=umodr .
As soon as ged(p + 1 — ¢, Pr(p)) = r, then the following two tests are enough:
1. test if 2®*® = 1 with Frobenius maps;
2. test if 2P = 2z, using cyclotomic squarings [GS10] for a faster exponentiation.

Remark 3.1. For BLS-curves of embedding degree k a power of 3 (k = 37), the cyclotomic
polynomial ®x(z) does not generate primes, actually one has r(x) = ®(x)/3. Moreover a
BLS curve has points of order 3, hence ged(p + 1 —t, ®y(p)) = 3r for all k = 3.
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G2 membership

Following [Sco21, Section 4], let E(F,) be an elliptic curve of j-invariant 0 and embedding
degree k = 12. Let E" be the sextic twist of £ defined over Fr/a = Fp2, and ¢ the
“untwist-Frobenius-twist” endomorphism with the minimal polynomial

X(X)=X*—tX +p. (3.7)

Let Q € E'(F,2). We have ged(p 4+ 1 — ¢, #E'(F,2)) = r. To check if Q is in E'(F,2)[r], it

is therefore sufficient to verify that
p+1-tQ=0".
Since [p] = —9* + [t] o ¥ from Eq. (3.7), the test to perform becomes

Yo ([t]Q —¥(Q)+Q—-[Q=0. (3.8)

It is an efficient test since 1) is fast to evaluate and [t]@) can be computed once and cheaper
than [r]Q. For BLS12 curves t = u+1 and the test to perform becomes in [Sco21, Section 4]
the quadratic equation

Y(uQ) +¥(Q) — ¥*(Q) = uQ .

So far, the only used fact is x(¢0) = 0, which is true everywhere. So the reasoning is correct
and we have

Y(uQ) +¥(Q) —v*(Q) =uQ = Q€ E'(Fp)lr].

However the preprint [Sco21, Section 4| goes further and writes that the quadratic equation
has only two solutions, (@) = @ and ¢(Q) = uQ. Since ¥ does not act trivially on E'(FF,2)
the conclusion is

P(Q) =uQ = Q€ E'(Fp)[r] . (3.9)

The issue. The previous property is, by luck, true as we will show later (Example 3.3).
However, the overall reasoning is flawed, because it circles back to the fact that 1 acts as
the multiplication by v on G, while we are trying to prove that @) is in G,. This is the
same kind of tautological reasoning reproached in the footnote of Scott’s preprint [Sco21].
This reasoning implicitly supposes ¢ acts as the multiplication by w only on E'(FF,2)[r],
and therefore that this action characterizes E'(F,2)[r]. However, E'(FF,2)[r] might not be
the only subgroup of E'(F,2) on which ¢ has the eigenvalue u. Indeed, if a prime number
¢ divides the cofactor ¢z and x(u) = 0 mod ¢, it is possible that, on E'(FF,2)[], ¥ acts as
the multiplication by u, for instance if E'(F,2)[¢] contains the eigenspace associated to u.
So the implication (3.9) is true, provided that no such prime exists.

The solution. The implication (3.9) becomes true if we know that there is no other
subgroup of E'(F,2) on which ¢ acts as the multiplication by u. To make sure of this, it
is enough to check that x(u) # 0 mod ¢; for all primes ¢; dividing c,. If that is the case,
we know that ¢ acts as the multiplication by u only on E'(F,2)[r]. Using the Chinese
Remainder Theorem it gives the following criterion:

Proposition 3.2. If ¢ acts as the multiplication by u on E'(F,2)[r] and ged(x(u),ca) = 1
then

Y(Q) =[uQ = Qe E'(Fp)[r] .
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Note that checking the ged of the polynomials x(A(X)) and co(X) is not sufficient and
one needs to check the ged of the integers, that are evaluations of the polynomials at u. In
fact, ged(x(A(X)), c2(X)) = 1 in Q[X] only means that there is a relation Ax(\)+ Bey =1
where A, B € Q[X]. The seeds u are chosen so that x(A(u)), ca(u) are integers, but it might
not be the case for A(u) and B(u). If d is the common denominator of the coefficients of
A and B, we can only say that for a given seed u, ged(x(u), ca(u)) | d. Therefore, we have
to take care of the “exceptional seeds” u such that ged(x(u), ca(u)) is a proper divisor of d.

A generalisation of G; and G; membership tests

Proposition 3.2 can be generalized to both G; and Gy groups for any polynomial-based
family of elliptic curves (e.g. BLS, BN, KSS). Let E(F;) be a family of elliptic curves
(ie. it can be E(F,) or E'(F,a) for instance). Let G be a cryptographic group of E of
order 7 equipped with an efficient endomorphism ¢. It has a minimal polynomial ¥ and
an eigenvalue A. Let ¢ be the cofactor of G. Proposition 3.2 becomes then

Proposition 3.3. If ¢ acts as the multiplication by X on E(F)[r] and ged(x(\),c) = 1
then

Q) =NQ = Q€ E(F;)[r] .

Example 3.2 (BN). Let E(F,,)) define the BN pairing-friendly family. It is parameterized
by

p(z) = 362* + 362° + 2422 + 62 + 1
r(z) = 36z + 362> + 182° + 62 + 1
t(z) =62 + 1

and E(F,)) has a prime order so ¢y = 1. The cofactor on the seatic twist E'(F,z2) is ¢ = ¢,

co(w) = p(z) — 1+ t(x)
= 362t + 362> + 3022+ 62+ 1 .

On G =Gy = E'(F,)[r]

=1 (the “untwist-Frobenius-twist”) has a minimal polynomial
X = x and an eigenvalu A

%
e A

X=X>—tX+p
A =6X2.

We have ged(cy, x(\)) = ged(ca(X), x(6X?)) = 1, and running the extended Euclidean
algorithm we find a relation Acy + Bx(\) = 1 where A, B € Q[X]. The common denom-
inator of the coefficients of A and B is d = 2. We now look at the congruence relations
the seed u should satisfy so that x(A(u)) and ca(u) are both divisible by 2: those will be the
exceptional seeds, under which the implication (3.9) could be false. Since ¢y is always odd
there 1s no exceptional seeds and we obtain:

Proposition 3.4. For the BN family, if Q € E'(F,2),

Y(Q) =[uQ = Qe E'(Fp)[r] .



Chapter 3 - Elliptic curves for SNARKSs 51

Example 3.3 (BLS12). The BLS12 parameters are:
plr) = (z—1)°/3-r(x) +z
r(r) =2 —2* +1
tx)=x+1.

On G = Gy = E(F,)[r], the endomorphism ® = ¢ has minimal polynomial X = y and
etgenvalue A = X as follows:

x=X*+X+1

A= —-X?.
We have ¢ = ¢; = (X — 1)?/3. Running the extended Euclidean algorithm on ci and x()),
we find a relation Acy + Bx(A) =1 in Q[X]. In fact, here A and B are in Z|X]|, so there

are no exceptional cases: for any acceptable seed u, ged(ci(u), x(A(w))) = 1, so we retrieve
the result from Scott’s paper [Sco21]:

Proposition 3.5. For the BLS12 family, if Q € E(F,),
$(Q) = [~u"]Q = Q€ E(F,)[r] .

On G = Gy = E'(F2)[r], ¢ =1 (the “untwist-Frobenius