Pairings in Rank-1 Constraint Systems

Youssef El Housni

Consensys (Linea)

SIAM-AG 2023 — July 12th, 2023

Preliminaries

- SNARKs
- Bilinear pairings

2 Motivations

- Applications
- Pairings in-circuitR1CS
 - Optimizations

Preliminaries

- SNARKs
- Bilinear pairings

2 Motivations• Applications

- Pairings in-circuitR1CS
 - Optimizations

Let F be a public NP program, x and z be public inputs, and w be a private input such that

$$\mathsf{z} \coloneqq \mathsf{F}(\mathsf{x}, \mathsf{w})$$

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: $(pk, vk) \leftarrow S(F, 1^{\lambda})$

Let F be a public NP program, x and z be public inputs, and w be a private input such that

$$\mathsf{z} \coloneqq \mathsf{F}(\mathsf{x}, \mathsf{w})$$

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	(<i>pk</i> , <i>vk</i>)	\leftarrow	$S(F,1^{\lambda})$
Prove:	π	\leftarrow	P(x, z, w, pk)

Let F be a public NP program, x and z be public inputs, and w be a private input such that

$$\mathsf{z} \coloneqq \mathsf{F}(\mathsf{x}, \mathsf{w})$$

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	(<i>pk</i> , <i>vk</i>)	\leftarrow	$\mathcal{S}(\textit{\textbf{F}},1^{\lambda})$
Prove:	π	\leftarrow	P(x, z, w, pk)
Verify:	false/true	\leftarrow	$V(x, z, \pi, vk)$

SNARKs of arithmetic circuits

$$x^3 + x + 5 = 35$$
 (x = 3)

SNARKs examples: Groth16 and PLONK

- *m* = number of wires
- *n* = number of multiplications gates
- *a* = number of additions gates
- $\ell =$ number of public inputs
- $M_{\mathbb{G}} =$ multiplication in \mathbb{G}
- P=pairing

	Setup	Prove	Verify
Groth16 [Gro16]	$3n \ { m M}_{{\mathbb G}_1} \ m \ { m M}_{{\mathbb G}_2}$	$\begin{array}{c} (3n+m-\ell) \ \ M_{\mathbb{G}_2} \\ n \ \ M_{\mathbb{G}_2} \\ 7 \ \ \mathrm{FFT} \end{array}$	$\begin{array}{c} {\rm 3P} \\ \ell \ {\rm M}_{{\mathbb G}_1} \end{array}$
PLONK (KZG) [GWC]	$\begin{array}{c} d_{\geq n+a} & \mathtt{M}_{\mathbb{G}_1} \\ 1 & \mathtt{M}_{\mathbb{G}_2} \\ 8 & \mathtt{FFT} \end{array}$	9(n+a) M _{G1} 8 FFT	$\begin{array}{c} 2\text{P} \\ 18 \text{ M}_{\mathbb{G}_1} \end{array}$

• $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.

- r prime divisor of $#E(\mathbb{F}_q) = q + 1 t$, t Frobenius trace.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- a bilinear pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- $\mathbb{G}_1 \subset E(\mathbb{F}_q)$ a group of order r
- $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})$ a group of order r
- $\mathbb{G}_{\mathcal{T}} \subset \mathbb{F}_{a^k}^*$ group of *r*-th roots of unity

Preliminaries

- SNARKs
- Bilinear pairings

2 Motivations• Applications

- Pairings in-circuitR1CS
 - Optimizations

- Proof aggregation or
- Private computation (ZEXE) e.g. G16 proof $\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1$ and $vk = (vk_1, vk_2, vk_3, vk_4) \in \mathbb{G}_T \times \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2 \times \mathbb{G}_2$

$$\mathbb{V}: \quad e(A,B) \stackrel{?}{=} vk_1 \cdot e(vk_2',vk_3) \cdot e(C,vk_4) \qquad (O_{\lambda}(\ell)) \qquad (1)$$

and $vk'_2 = \sum_{i=0}^{\ell} [x_i]vk_2$.

• BLS signatures

$$\mathbb{V}: \quad e(\sigma, \mathbb{G}_2) \stackrel{?}{=} e(H(m), Q_{pk}) \tag{2}$$

where $\sigma \in \mathbb{G}_1$ is the signature, H(m) the message hashed into \mathbb{G}_1 and Q_{pk} the public key of the sender. • Proof of KZG verification (zkEVM) Proof of P(z) = y ($P \in \mathbb{F}_r[X]$)

$$\mathbb{V}: \quad e(\pi, \nu k - [z]\mathbb{G}_2) \stackrel{?}{=} e(C - [y]\mathbb{G}_1, \mathbb{G}_2) \tag{3}$$

where $C \in \mathbb{G}_1$ is the commitment and $vk \in \mathbb{G}_1$ the verification key.

ate pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$
$$(P, Q) \mapsto f_{t-1,Q}(P)^{(q^k-1)/r}$$

- $f_{t-1,Q}(P)$ is the Miller function
- $f \mapsto f^{(q^k-1)/r}$ is the final exponentiation

Examples: For polynomial families in the seed x, BLS12 $e(P, Q) = f_{x,Q}(P)^{(q^{12}-1)/r}$ BLS24 $e(P, Q) = f_{x,Q}(P)^{(q^{24}-1)/r}$ Algorithm 1: MillerLoop(s, P, Q)Output: $m = f_{s,Q}(P)$ $m \leftarrow 1; R \leftarrow Q$ for b from the second most significant bit of s to the least do $\ell \leftarrow \ell_{R,R}(P); R \leftarrow [2]R; v \leftarrow v_{[2]R}(P)$ Doubling Step $m \leftarrow m^2 \cdot \ell/v$ if b = 1 then $\ell \leftarrow \ell_{R,Q}(P); R \leftarrow R + Q; v \leftarrow v_{R+Q}(P)$ Addition Step $m \leftarrow m \cdot \ell/v$

return m

Algorithm 1: MillerLoop(s, P, Q)Output: $m = f_{s,Q}(P)$ $m \leftarrow 1; R \leftarrow Q$ for b from the second most significant bit of s to the least do $\ell \leftarrow \ell_{R,R}(P); R \leftarrow [2]R;$ $m \leftarrow m^2 \cdot \ell$ if b = 1 then $\ell \leftarrow \ell_{R,Q}(P); R \leftarrow R + Q;$ $m \leftarrow m \cdot \ell$

return m

Algorithm 1: MillerLoop(s, P, Q)Output: $m = f_{s,Q}(P)$ $m \leftarrow 1$; $R \leftarrow Q$ for b from the second most significant bit of s to the least do $\ell \leftarrow \ell_{R,R}(P)$; $R \leftarrow [2]R$; $m \leftarrow m^2 \cdot \ell$ if b = 1 then $\ell \leftarrow \ell_{R,Q}(P)$; $R \leftarrow R + Q$; $m \leftarrow m \cdot \ell$

return m

 \mathbb{G}_2 :

- Coordinates compressed in $\mathbb{F}_{a^{k/d}}$ instead of \mathbb{F}_{a^k} (where d is the twist degree) [BN06] - Homogeneous projective coordinates (X, Y, Z) [AKL+11, ABLR14] - Sharing computation between Double/Add and lines evaluation [AKL⁺11, ABLR14] Finite fields: - $\mathbb{F}_{p} \rightarrow \cdots \rightarrow \mathbb{F}_{p^{k/d}} \rightarrow \cdots \rightarrow \mathbb{F}_{p^{k}}$ - efficient representation of line (multiplying the line evaluation by a factor \rightarrow wiped out later) [ABLR14] - efficient sparse multiplications in \mathbb{F}_{p^k} [Sco19]

Pairings out-circuit: Final exponentiation

$$\frac{p^{k}-1}{r} = \underbrace{\frac{p^{k}-1}{\Phi_{k}(p)}}_{\text{easy part}} \cdot \underbrace{\frac{\Phi_{k}(p)}{r}}_{\text{hard part}}$$

easy part: a polynomial in p with small coefficients (Frobenius maps) e.g. (BLS12): 1F2 + 1Conj + 1Inv + 1Mul in $\mathbb{F}_{p^{12}}$

hard part: More expensive. Vectorial or lattice-based Optimizations [HHT, AFK⁺13, GF16] dominating cost: CycloSqr [GS10, Kar13] + Mul in \mathbb{F}_{p^k}

Preliminaries

- SNARKs
- Bilinear pairings
- 2 Motivations• Applications
- Pairings in-circuitR1CS
 - Optimizations

Rank-1 Constraint System

$$x^3 + x + 5 = 35$$
 (x = 3)

constraints:

 $o = l \cdot r$ $a = x \cdot x$ $b = a \cdot x$ $c = (b + x) \cdot 1$ $d = (c + 5) \cdot 1$

witness:

	Time	Constraints
BLS12-377	< 1 ms	pprox 80 000

This work: 80 000 \rightarrow 11 500

R1CS is about writing $o = l \cdot r$ • Over \mathbb{F}_p : • Square = Mul $(o = I \cdot I)$ • Inv = Mul + 1C $(1/l = o \rightarrow 1 \stackrel{?}{=} l \cdot o \text{ with } o \text{ an input hint})$ • Div = Mul + 1C ($r/l = o \rightarrow r \stackrel{?}{=} l \cdot o$ with o an input hint) • $Inv+Mul \rightarrow Div$ • Over \mathbb{F}_{p^e} : • Square \neq Mul (e.g. \mathbb{F}_{p^2} 2C vs 3C) • Inv = Mul + eC $(1/l = o \rightarrow 1 \stackrel{?}{=} l \cdot o \text{ with } o \text{ an input hint})$ • Div = Mul + eC ($r/l = o \rightarrow r \stackrel{?}{=} l \cdot o$ with o an input hint) • $Inv+Mul \rightarrow Div$

 \mathbb{G}_2 Double: [2](x_1, y_1) = (x_3, y_3)

 $\lambda = 3x_1^2/2y_1$

 $x_3 = \lambda^2 - 2x_1$

 $y_3 = \lambda(x_1 - x_3) - y_1$

 $\mathbb{G}_2 \text{ Add: } (x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ $\lambda = (y_1 - y_2)/(x_1 - x_2)$ $x_3 = \lambda^2 - x_1 - x_2$ $y_3 = \lambda(x_2 - x_3) - y_2$

	Div (5C)	Sq (2C)	Mul (3C)	total
Double	1	2	1	12C
Add	1	1	1	10C

In the Miller loop, when $b = 1 \implies [2]R + Q \rightarrow 22C$ Instead: $[2]R + Q = (R + Q) + R \rightarrow 20C$ Better: omit y_{R+Q} computation in $(R + Q) + R \rightarrow 17C$ [ELM03] \mathbb{G}_2 Double-and-Add: $[2](x_1, y_1) + (x_2, y_2) = (x_4, y_4)$

$$\lambda_{1} = (y_{1} - y_{2})/(x_{1} - x_{2})$$

$$x_{3} = \lambda_{1}^{2} - x_{1} - x_{2}$$

$$\lambda_{2} = -\lambda_{1} - 2y_{1}/(x_{3} - x_{1})$$

$$x_{4} = \lambda_{2}^{2} - x_{1} - x_{3}$$

$$y_{4} = \lambda_{2}(x_{1} - x_{4}) - y_{1}$$

	Div (5C)	Sq (2C)	Mul (3C)	total
Double-and-Add	2	2	1	17C

- ℓ is $ay + bx + c = 0 \in \mathbb{F}_{p^2}$
- $\ell_{\psi([2]R)}(P)$ and $\ell_{\psi(R+Q)}(P)$ are of the form $(a'y_P, 0, 0, b'x_P, c', 0) \in \mathbb{F}_{p^{12}} (\psi : E'(\mathbb{F}_{p^{k/d}}) \to E(\mathbb{F}_{p^k}))$ [ABLR14] \to sparse multiplication (1) in $\mathbb{F}_{p^{12}}$
- precompute $1/y_P$ (1C) and x_P/y_P (1C) and $\ell(P)$ becomes $(1, 0, 0, b'x_P/y_P, c'/y_p, 0) \in \mathbb{F}_{p^{12}}$
 - \rightarrow better sparse multiplication (2) in $\mathbb{F}_{p^{12}}$

	total
Full Mul	54C
Sparse Mul (1)	39C
Sparse Mul (2)	30C

Easy part:

t.Conjugate(m) m.Inverse(m) // 66C t.Mul(t, m) // 54C m.FrobeniusSquare(t) m.Mul(m, t) // 54C Easy part:

t.Conjugate(m) t.Div(t, m) // 66C m.FrobeniusSquare(t) m.Mul(m, t) // 54C Easy part: (more on that later)

t.Div(-m[0], m[1]) // 18C m.TorusFrobeniusSquare(t) m.TorusMul(m, t) // 42C r := Decompress(m) // 48C

	total
Old	174
New	120
New (Torus)	60 (or 108)

Hard part (Hayashida et al. [HHT])

```
t[0].CyclotomicSquare(m)
t[1].Expt(m) // m^{x} addchain (Mul + CycloSqr)
t[2]. Conjugate(m)
t[1].Mul(t[1], t[2])
t[2].Expt(t[1])
t[1]. Conjugate(t[1])
t[1].Mul(t[1], t[2])
t[2].Expt(t[1])
t[1]. Frobenius(t[1])
t[1].Mul(t[1], t[2])
m.Mul(m, t[0])
t[0].Expt(t[1])
t[2].Expt(t[0])
t[0]. FrobeniusSquare(t[1])
t[1]. Conjugate(t[1])
t[1].Mul(t[1], t[2])
t[1].Mul(t[1], t[0])
m.Mul(m, t[1])
```

Table: Square in cyclotomic $\mathbb{F}_{p^{12}}$

	Compress	Square	Decompress
Normal	0	36	0
Granger-Scott [GS10]	0	18	0
Karabina [Kar13] SQR2345	0	12	19
Karabina [Kar13] SQR12345	0	15	8
Torus $(\mathbb{T}_2)[RS03]$	24	24	48

- 1 or 2 squarings \implies Granger-Scott
- 3 squarings \implies Karabina SQR12345
- \geq 4 squarings \implies Karabina SQR2345

Table: Mul in cyclotomic $\mathbb{F}_{p^{12}}$

	Compress	Multiply	Decompress
Normal	0	54	0
Torus $(\mathbb{T}_2)[RS03]$	24	42	48

- Compression/Decompression only once!
- Whole final exp. in compressed form over \mathbb{F}_{p^6}
- Better:
 - Absorb the compression in the easy part computation
 - Do we really need decompression?

Definition

Let \mathbb{F}_q be a finite field and \mathbb{F}_{q^k} a field extension of \mathbb{F}_q . Then the norm of an element $\alpha \in \mathbb{F}_{q^k}$ with respect to \mathbb{F}_q is defined as the product of all conjugates of α over \mathbb{F}_q , namely $N_{\mathbb{F}_{q^k}/\mathbb{F}_q} = \alpha \alpha^q \cdots \alpha^{q^{k-1}} = \alpha^{(q^k-1)/(q-1)}$

$$T_{k}(\mathbb{F}_{q}) = \bigcap_{\mathbb{F}_{q} \subset F \subset \mathbb{F}_{q^{k}}} ker(N_{\mathbb{F}_{q^{k}}/F})$$

Lemma

Let
$$\alpha \in \mathbb{F}_{q^k}$$
, then $\alpha^{(q^k-1)/\Phi_k(q)} \in T_k(\mathbb{F}_q)$

$$\begin{split} \mathbb{T}_2 \text{ cryptosystem introduced by Rubin and Silverberg [RS03].} \\ \text{Let } \alpha &= c_0 + \omega c_1 \in \mathbb{F}_{q^k} - \{1, -1\} \text{ (cyclotomic subgroup), we have compress } f(\alpha) &= (1 + c_0)/c_1 = \beta \in \mathbb{F}_{q^{k/2}} \\ \text{decompress } f^{-1}(\beta) &= (\beta + \omega)/(\beta - \omega) = \alpha \\ \text{Mul } \beta_1 \times \beta_2 &= (\beta_1 \beta_2 + \omega)/(\beta_1 + \beta_2) \\ \text{Square } \beta^2 &= \frac{1}{2}(\beta + \omega/\beta) \\ \text{Inverse } 1/\beta &= -\beta \end{split}$$

\mathbb{T}_2 arithmetic is R1CS-friendly!

Easy part: $m^{(q^{12}-1)/\Phi_k(p)} = m^{(p^6-1)(p^2+1)}$ Let $\alpha = c_0 + \omega c_1 \in \mathbb{F}_{q^{12}} - \{1\}$ (cyclotomic subgroup),

$$\alpha^{p^{6}-1} = (c_{0} + \omega c_{1})^{p^{6}-1}$$

= $(c_{0} + \omega c_{1})^{p^{6}}/(c_{0} + \omega c_{1})$
= $(c_{0} - \omega c_{1})/(c_{0} + \omega c_{1})$
= $(-c_{0}/c_{1} + \omega)/(-c_{0}/c_{1} - \omega)$
 $f(\alpha) = (-c_{0}/c_{1})^{p^{2}+1}$
= $(-c_{0}/c_{1})^{p^{2}} \times (-c_{0}/c_{1})$

ightarrow 60C

Implementation open-sourced (MIT/Apache-2.0) at https://github.com/ConsenSys/gnark e.g. For BLS12-377,

	Constraints
Pairing	11535
Groth16 verifier	19378
BLS sig. verifier	14888
KZG verifier	20679

For BLS24-315, a pairing is ${\bf 27608}$ contraints . More optimizations in mind:

- Quadruple-and-Add Miller loop [CBGW10]
- Fixed argument Miller loop (KZG, BLS sig) [CS10]
- Longa's sums of products Mul [Lon22]

Conclusion Let's play with gnark!

https://play.gnark.io/

or (a) Ognark	play.	gnark.io	
) gnark			12 🖬 🐨 incognito 🚦
-			Docs 🖓 Star 487
i ne gr	nark	playground	• Groth16 PionK Run Share Examples *
1 /// 2 pa 3 4 • im 5 6 7 8 9 10 11 12 13 14 • fu 15 16 17 18 19 20 21 22 24 // 25 // 26 // 27 // 20 20 20 20 20 20 20 20 20 20	/ Helcackage mport "by" "en "gi "gi "gi "gi "gi "gi "gi "gi "gi "gi	ene to the park plogram.ull main Certification of the park plogram.ull certification of the park plogram of the park plogram control and conservery speech characterization the certification of the park plotter of the plotter bloc.certification of the plotter of the plotter constant world plotter plotter constant world plotter constant world plotter the certification of the plotter constant world plotter constant world plotter constant world plotter constant world plotter constant world plotter constant world plotter constant constant plotter constant plot	carres.
 Proof 19378 	is va const	nlid ∽ raints ≟, L.	t == 0
# L	L	R	٥
0 1	1	hv@ + 91893752504881257701523279626832445440-hv1	Hash + 8444461749428370424248824938781546531375899335154063827935233455917409239041-hv2
1 h	1¥3	1 + -hv3	0

Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jefferson E. Ricardini.

The realm of the pairings.

In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, *SAC 2013*, volume 8282 of *LNCS*, pages 3–25. Springer, Heidelberg, August 2014.

Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and Francisco Rodríguez-Henríquez.

Implementing pairings at the 192-bit security level.

In Michel Abdalla and Tanja Lange, editors, *PAIRING 2012*, volume 7708 of *LNCS*, pages 177–195. Springer, Heidelberg, May 2013.

References II

Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio Cesar López-Hernández.

Faster explicit formulas for computing pairings over ordinary curves.

In Kenneth G. Paterson, editor, *EUROCRYPT 2011*, volume 6632 of *LNCS*, pages 48–68. Springer, Heidelberg, May 2011.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation.

In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.

Scalable zero knowledge via cycles of elliptic curves.

In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014, Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

References III

- Paulo S. L. M. Barreto and Michael Naehrig.

Pairing-friendly elliptic curves of prime order.

In Bart Preneel and Stafford Tavares, editors, *SAC 2005*, volume 3897 of *LNCS*, pages 319–331. Springer, Heidelberg, August 2006.

Craig Costello, Colin Boyd, Juan Manuel González Nieto, and Kenneth Koon-Ho Wong.

Avoiding full extension field arithmetic in pairing computations.

In Daniel J. Bernstein and Tanja Lange, editors, *AFRICACRYPT 10*, volume 6055 of *LNCS*, pages 203–224. Springer, Heidelberg, May 2010.

References IV

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur.

Geppetto: Versatile verifiable computation.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015. ePrint 2014/976.

Craig Costello and Douglas Stebila.

Fixed argument pairings.

In Michel Abdalla and Paulo S. L. M. Barreto, editors, *LATINCRYPT 2010*, volume 6212 of *LNCS*, pages 92–108. Springer, Heidelberg, August 2010.

References V

Youssef El Housni and Aurore Guillevic.

Families of SNARK-friendly 2-chains of elliptic curves.

In Orr Dunkelman and Stefan Dziembowski, editors, *EUROCRYPT 2022*, volume 13276 of *LNCS*, pages 367–396. Springer, 2022. ePrint 2021/1359.

Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery.
 Fast elliptic curve arithmetic and improved Weil pairing evaluation.
 In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 343–354.
 Springer, Heidelberg, April 2003.

Loubna Ghammam and Emmanuel Fouotsa.

On the computation of the optimal ate pairing at the 192-bit security level. Cryptology ePrint Archive, Report 2016/130, 2016. https://eprint.iacr.org/2016/130.

References VI

Jen

Jens Groth.

On the size of pairing-based non-interactive arguments.

In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016*, *Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Heidelberg, May 2016.

Robert Granger and Michael Scott.

Faster squaring in the cyclotomic subgroup of sixth degree extensions.

In Phong Q. Nguyen and David Pointcheval, editors, *PKC 2010*, volume 6056 of *LNCS*, pages 209–223. Springer, Heidelberg, May 2010.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.

PLONK: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge.

ePrint 2019/953.

References VII

Daiki Hayashida, Kenichiro Hayasaka, and Tadanori Teruya.

Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic curves.

ePrint 2020/875.

Koray Karabina.

Squaring in cyclotomic subgroups.

Math. Comput., 82(281):555-579, 2013.

Patrick Longa.

Efficient algorithms for large prime characteristic fields and their application to bilinear pairings and supersingular isogeny-based protocols.

Cryptology ePrint Archive, Report 2022/367, 2022.

https://ia.cr/2022/367.

References VIII

Karl Rubin and Alice Silverberg.

Torus-based cryptography.

In Dan Boneh, editor, *CRYPTO 2003*, volume 2729 of *LNCS*, pages 349–365. Springer, Heidelberg, August 2003.

Michael Scott.

Pairing implementation revisited, 2019.

Pairings in SNARKs

An arithmetic mismatch

F any program is expressed in \mathbb{F}_r

P proving is performed over $\mathbb{F}_r[X]$ and \mathbb{G}_1 (and \mathbb{G}_2)

V verification (eq. 1, 2 and 3) is done in $\mathbb{F}_{a^k}^*$

 F_V programs of V are natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r

Pairings in SNARKs

An arithmetic mismatch

F any program is expressed in \mathbb{F}_r

P proving is performed over $\mathbb{F}_r[X]$ and \mathbb{G}_1 (and \mathbb{G}_2)

V verification (eq. 1, 2 and 3) is done in $\mathbb{F}_{a^k}^*$

 F_V programs of V are natively expressed in $\mathbb{F}_{a^k}^*$ not \mathbb{F}_r

- 1st attempt: choose a curve for which q = r (impossible)
- 2^{nd} attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations (× log q blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [CFH⁺15, BCTV14, BCG⁺20]

A cycle of elliptic curves:

$$\#E_2(\mathbb{F}_{p_2}) = p_1 \begin{pmatrix} E_2(\mathbb{F}_{p_2}) \\ \\ E_1(\mathbb{F}_{p_1}) \end{pmatrix} \#E_1(\mathbb{F}_{p_1}) = p_2$$

A 2-chain of elliptic curves:

$$\underbrace{E_{2}(\mathbb{F}_{p_{2}})}_{\#E_{2}(\mathbb{F}_{p_{2}})} = h \cdot p_{1}$$

$$\underbrace{E_{1}(\mathbb{F}_{p_{1}})}_{E_{1}(\mathbb{F}_{p_{1}})}$$

Eurocrypt 2022 [EG22]

Groth16

KZG

