The arithmetic of pairing-based proof systems

Youssef El Housni

PhD defense - Palaiseau, November 18, 2022

ECOLE
EOCTORALE

Overview

(1) Motivation
(2) zk-SNARK
(3) SNARK-friendly curves
(4) SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

Overview

(1) Motivation
2. $z k-S N A R K$
(3) SNARK-friendly curves
(4) SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

The story of Alice and Bob

Physical Transaction

Digital Transaction

(Courtesy of CBINSIGHTS)

The story of Alice and Bob

Digital Transaction: Ledger

Decentralized Ledger

Blockchains

A blockchain is a public peer-to-peer decentralized, transparent, immutable, paying ledger.

- Transparent: everything is visible to everyone
- Immutable: nothing can be removed once written
- Paying: everyone should pay a fee to use

$$
\begin{gathered}
\text { Transparent } \xrightarrow[\text { Problem }]{ } \text { confidentiality } \\
\text { Immutable } \xrightarrow[\text { Problem }]{ } \text { scalability } \\
\text { Paying } \underset{\text { Problem }}{ } \text { cost }
\end{gathered}
$$

Overview

(1) Motivation
(2) zk -SNARK
(3) SNARK-friendly curves
4. SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

Zero-knowledge proofs (ZKP)

Alice
I know the solution to this complex equation

Bob
No idea what the solution is but Alice claims to know it

Challenge
Response

Zero-knowledge proofs (ZKP)

Alice

I know the solution to this complex equation

Bob
No idea what the solution is but Alice claims to know it
$\xrightarrow{\text { Challenge }}$

- Sound: Alice has a wrong solution \Longrightarrow Bob is not convinced.

Zero-knowledge proofs (ZKP)

Alice

I know the solution to this complex equation

Bob
No idea what the solution is but Alice claims to know it

Challenge
Response

- Sound: Alice has a wrong solution \Longrightarrow Bob is not convinced.
- Complete: Alice has the solution \Longrightarrow Bob is convinced.

Zero-knowledge proofs (ZKP)

Alice

I know the solution to this complex equation

Bob
No idea what the solution is but Alice claims to know it

Challenge
Response

- Sound: Alice has a wrong solution \Longrightarrow Bob is not convinced.
- Complete: Alice has the solution \Longrightarrow Bob is convinced.
- Zero-knowledge: Bob does NOT learn the solution.

Example: Sigma protocol

Alice

Bob
I know x such that $g^{x}=y$

Example: Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
n \stackrel{\$}{\longleftarrow} \mathbb{Z}_{r}
$$

$$
A=g^{n}
$$

Example: Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
\begin{aligned}
& n \stackrel{\$}{\longleftarrow} \mathbb{Z}_{r} \\
& A=g^{n} \\
& \text { C } \\
& c \stackrel{\$}{\leftarrow} \mathbb{Z}_{r}
\end{aligned}
$$

Bob

Example: Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
\begin{array}{rl}
n \stackrel{\$}{\longleftarrow} \mathbb{Z}_{r} & \frac{A=g^{n}}{c} \\
s=n+c \cdot x & c \stackrel{\$}{\longleftrightarrow}
\end{array} \quad c \mathbb{Z}_{r}
$$

Bob

Example: Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
n \stackrel{\$}{\longleftarrow} \mathbb{Z}_{r}
$$

$$
\xrightarrow{A=g^{n}}
$$

$$
\begin{gathered}
c \stackrel{\$}{\leftrightarrows} \mathbb{Z}_{r} \\
g^{s} \stackrel{?}{=} A \cdot y^{c} \\
\text { with } A \cdot y^{c}=g^{n} \cdot g^{x \cdot c} \\
\text { then } g^{n} \cdot g^{x \cdot c}=g^{n+x \cdot c}
\end{gathered}
$$

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
\begin{array}{lll}
& n \stackrel{\$}{\leftrightarrows} \mathbb{Z}_{r} \\
& \\
& =g^{n} \\
c=H(A, y) \\
s=n+c \cdot x & \pi=(A, c, s) & \\
& & g^{s} \stackrel{?}{=} A \cdot y^{c} \\
& \stackrel{?}{=} H(A, y)
\end{array}
$$

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice

I know x such that $g^{x}=y$

$$
\begin{aligned}
& n \stackrel{\Phi}{\leftrightarrows} \mathbb{Z}_{r} \\
& \underbrace{g}_{\text {Setup }} ; A=g^{n} \quad \underbrace{\pi=(A, c, s)}_{\text {proof }} \\
& c=H(A, y) \\
& \underbrace{s=n+c \cdot x}_{\text {Prove }} \\
& \begin{array}{l}
g^{s} \stackrel{?}{=} A \cdot y^{c} \\
\underbrace{\stackrel{?}{=} H(A, y)}_{\text {Verify }}
\end{array}
\end{aligned}
$$

ZKP families

Expressivity

- specific statement vs. general statement

ZKP families

Expressivity

- specific statement vs. general statement Deployability
- interactive vs. non - interactive protocol
- trapdoored setup vs. transparent setup
- Designated verifier vs. any verifier

ZKP families

Expressivity

- specific statement vs. general statement

Deployability

- interactive vs. non - interactive protocol
- trapdoored setup vs. transparent setup
- Designated verifier vs. any verifier

Complexity

- prover complexity (Alice)
- verifier complexity (Bob)
- communication complexity (size of the proof and the setup)

ZKP families

Expressivity

- specific statement vs. general statement Deployability
- interactive vs. non - interactive protocol
- trapdoored setup vs. transparent setup
- Designated verifier vs. any verifier

Complexity

- prover complexity (Alice)
- verifier complexity (Bob)
- communication complexity (size of the proof and the setup)

Security

- Cryptographic assumptions
- Cryptographic primitives

Blockchains and ZKP

A blockchain is a public peer-to-peer decentralized, transparent, immutable, paying ledger.

- Transparent: everything is visible to everyone
- Immutable: nothing can be removed once written
- Paying: everyone should pay a fee to use

Transparent $\xrightarrow[\text { Problem }]{ }$ confidentiality

Immutable $\underset{\text { Problem }}{ }$ scalability

$$
\text { Paying } \xrightarrow[\text { Problem }]{ } \text { cost }
$$

$\xrightarrow[\text { Solution }]{\longrightarrow}$ ZKP
setup, prover?, verifier?

Solution
Communication complexity

Verifier complexity, prover?

ZKP literature landmarks

- First ZKP work [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]
- Succinct Non-Interactive ZKP [M94]

ZKP literature landmarks

- First ZKP work [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]
- Succinct Non-Interactive ZKP [M94]
- Pairing-based succinct NIZK [Groth10]

ZKP literature landmarks

- First ZKP work [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]
- Succinct Non-Interactive ZKP [M94]
- Pairing-based succinct NIZK [Groth10]
- "SNARK" terminology and characterization of existence [BCCT11]
- Pairing-based SNARK in quasi-linear prover time [GGPR13]
- Pairing-based SNARK with shortest proof and verifier time [Groth16]

ZKP literature landmarks

- First ZKP work [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]
- Succinct Non-Interactive ZKP [M94]
- Pairing-based succinct NIZK [Groth10]
- "SNARK" terminology and characterization of existence [BCCT11]
- Pairing-based SNARK in quasi-linear prover time [GGPR13]
- Pairing-based SNARK with shortest proof and verifier time [Groth16]
- SNARK with universal and updatable setup [GKMMM18, BKMM19 (Sonic), GWC19 (PlonK), CHMMVW19 (Marlin),...]

What is a zero-knowledge proof?

"I have a sound, complete and zero-knowledge proof that a statement is true". [GMR85]

Sound

False statement \Longrightarrow cheating prover cannot convince honest verifier.

Complete

True statement \Longrightarrow honest prover convinces honest verifier.

Zero-knowledge

True statement \Longrightarrow verifier learns nothing other than statement is true.

zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof that a statement is true and that I know a related secret".

Succinct

A proof is very "short" and "easy" to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification (except the proof message).

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

Preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input
$z:=F(x, w)$

Preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

$$
\text { Setup : } \quad(p k, v k) \quad \leftarrow\left(F, 1^{\lambda}\right)
$$

Preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup :	$(p k, v k)$	\leftarrow	$S\left(F, 1^{\lambda}\right)$
Prove :	π	\leftarrow	$P(x, z, w, p k)$

Preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup :	$(p k, v k)$	\leftarrow	$S\left(F, 1^{\lambda}\right)$
Prove :	π	\leftarrow	$P(x, z, w, p k)$
Verify :	false/true	\leftarrow	$V(x, z, \pi, v k)$

Preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup :	$(p k, v k)$	\leftarrow	$S\left(F, 1^{\lambda}\right)$
Prove :	π	\leftarrow	$P(x, z, w, p k)$
Verify :	false/true	\leftarrow	$V(x, z, \pi, v k)$

$$
\begin{aligned}
& \text { Anyone } \\
& (p k, v k) \leftarrow S\left(F, 1^{\lambda}\right) \\
& \begin{array}{cc}
\stackrel{p k}{k} & \vee k \\
\text { Alice (prover) } & \text { Bob (verifier) } \\
\pi \leftarrow P(x, z, w, p k) \longrightarrow & \pi
\end{array}
\end{aligned}
$$

(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup :	$(p k, v k)$	\leftarrow	$S\left(F, \tau, 1^{\lambda}\right)$
Prove :	π	\leftarrow	$P(x, z, w, p k)$
Verify :	false/true	\leftarrow	$V(x, z, \pi, v k)$

> TTP (secret trapdoor $\tau)$ $(p k, v k) \leftarrow S\left(F, \tau, 1^{\lambda}\right)$
pk
Alice (prover)

$$
\pi \leftarrow P(x, z, w, p k)
$$

(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x, z : public inputs, w : private input

$$
z:=F(x, w)
$$

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup :	$(p k, v k)$	\leftarrow	$S\left(F, \tau, 1^{\lambda}\right)$
Prove :	π	\leftarrow	$P(x, z, w, p k)$
Verify :	false/true	\leftarrow	$V(x, z, \pi, v k)$

MPC (secret trapdoor τ) $(p k, v k) \leftarrow S\left(F, \tau, 1^{\lambda}\right)$
pk
$v k$
Alice (prover)
Bob (verifier)
$\pi \leftarrow P(x, z, w, p k) \xrightarrow{\pi} V(x, z, \pi, v k)$?

zk-SNARK

Succinctness: A proof is very "short" and "easy" to verify.

Definition [BCTV14b]

A succinct proof π has size $O_{\lambda}(1)$ and can be verified in time $O_{\lambda}(|F|+|x|+|z|)$, where $O_{\lambda}($. is some polynomial in the security parameter λ.

Main ideas:

Main ideas:

(1) Reduce a "general statement" satisfiability to a polynomial equation satisfiability.

zk-SNARKs in a nutshell

Main ideas:

(1) Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
(2) Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high probability.

zk-SNARKs in a nutshell

Main ideas:

(1) Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
(2) Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high probability.
(3) Use homomorphic hiding cryptography to blindly verify the polynomial equation.

zk-SNARKs in a nutshell

Main ideas:

(1) Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
(2) Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high probability.
(3) Use homomorphic hiding cryptography to blindly verify the polynomial equation.
(3) Make the protocol non-interactive.

Arithmetization

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities \rightarrow zkSNARK proof

$$
x^{3}+x+5=35 \quad(x=3)
$$

Arithmetization

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities \rightarrow zkSNARK proof

$$
x^{3}+x+5=35 \quad(x=3)
$$

Arithmetization

e.g. R1CS

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities \rightarrow zkSNARK proof

$$
\begin{aligned}
L & =\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
R & =\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
O & =\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

witness:

$$
\begin{aligned}
\vec{w} & =\left(\begin{array}{llllll}
\text { one } & x & d & a & b & c
\end{array}\right) \\
& =\left(\begin{array}{lllllll}
1 & 3 & 35 & 9 & 27 & 30
\end{array}\right)
\end{aligned}
$$

$$
O \bullet \vec{w}=L \bullet \vec{w} \cdot R \bullet \vec{w}
$$

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities \rightarrow zk-SNARK proof

$$
L(X) R(X)-O(X)=H(X) T(X) \quad(Q A P \in \mathbb{F}[X])
$$

Arithmetization

e.g. Quadratic Arithmetic Program

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities \rightarrow zk-SNARK proof

$$
\begin{aligned}
L(X) R(X)-O(X) & =H(X) T(X) & & (Q A P \in \mathbb{F}[X]) \\
L(\tau) R(\tau)-O(\tau) & =H(\tau) T(\tau) & & (\text { trapdoor } \tau \stackrel{\$}{\leftarrow})
\end{aligned}
$$

Arithmetization

e.g. Quadratic Arithmetic Program

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities \rightarrow zk-SNARK proof

$$
\begin{aligned}
L(X) R(X)-O(X) & =H(X) T(X) & & (Q A P \in \mathbb{F}[X]) \\
L(\tau) R(\tau)-O(\tau) & =H(\tau) T(\tau) & & (\text { trapdoor } \tau \stackrel{\Phi}{\leftarrow} \mathbb{F}) \\
C(L(\tau) R(\tau)-O(\tau)) & =C(H(\tau) T(\tau)) & & (\text { Homomorphic commitment })
\end{aligned}
$$

Succinct evaluation of polynomials

Instead of verifying the QAP on the whole domain $\mathbb{F} \rightarrow$ verify it in a single random point $\tau \in \mathbb{F}$. Schwartz-Zippel lemma
Any two distinct polynomials of degree d over a field \mathbb{F} can agree on at most a $d /|\mathbb{F}|$ fraction of the points in \mathbb{F}.

Blind evaluation of polynomials

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities $\rightarrow \mathbf{z k}$-SNARK proof

Let's take the example of polynomial L :

Blind evaluation of polynomials

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities $\rightarrow \mathbf{z k}$-SNARK proof

Let's take the example of polynomial L :

- Alice can send L to Bob and he computes $L(\tau) \rightarrow$ breaks the zero-knowledge.

Blind evaluation of polynomials

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities $\rightarrow \mathbf{z k}$-SNARK proof

Let's take the example of polynomial L :

- Alice can send L to Bob and he computes $L(\tau) \rightarrow$ breaks the zero-knowledge.
- Bob can send τ to Alice and she computes $L(\tau) \rightarrow$ breaks the soundness.

Blind evaluation of polynomials

Statement \rightarrow Arithmetic circuit \rightarrow Intermediate representation \rightarrow Polynomial identities $\rightarrow \mathbf{z k}$-SNARK proof

Let's take the example of polynomial L :

- Alice can send L to Bob and he computes $L(\tau) \rightarrow$ breaks the zero-knowledge.
- Bob can send τ to Alice and she computes $L(\tau) \rightarrow$ breaks the soundness.
\Longrightarrow homomorphic cryptography to evaluate $L(X)$ at τ without Bob learning L nor Alice learning τ.

Blind evaluation of polynomials

$$
\begin{aligned}
L(\tau) & =I_{0}+I_{1} \tau+I_{2} \tau^{2}+\cdots+I_{d} \tau^{d} \in \mathbb{F} \\
C(L(\tau)) & =I_{0} C(1)+I_{1} C(\tau)+I_{2} C\left(\tau^{2}\right)+\cdots+I_{d} C\left(\tau^{d}\right)
\end{aligned}
$$

Somewhat homomorphic commitment w.r.t.:

- depth- d additions (arbitrary d)
- depth-1 multiplications (for $L(\tau) \cdot R(\tau)$ and $H(\tau) \cdot T(\tau)$).

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

- depth- d additions (arbitrary d)

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

- depth- d additions (arbitrary d)

$$
\begin{aligned}
C(\tau) & =\tau G \quad(D L) \\
L(\tau) G & =I_{0} G+I_{1} \tau G+I_{2} \tau^{2} G+\cdots+I_{d} \tau^{d} G
\end{aligned}
$$

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

- depth- d additions (arbitrary d)

$$
\begin{aligned}
C(\tau) & =\tau G \quad(D L) \\
L(\tau) G & =I_{0} G+I_{1} \tau G+I_{2} \tau^{2} G+\cdots+I_{d} \tau^{d} G
\end{aligned}
$$

- depth-1 multiplications (for $L(\tau) \cdot R(\tau)$ and $H(\tau) \cdot T(\tau)$).

$$
\begin{align*}
& C\left(\tau_{1}\right)=\tau_{1} G ; C\left(\tau_{2}\right)=\tau_{2} G \\
& C\left(\tau_{1}\right) \cdot C\left(\tau_{2}\right)=C\left(\tau_{1} \cdot \tau_{2}\right) \tag{?}
\end{align*}
$$

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

- depth- d additions (arbitrary d)

$$
\begin{aligned}
C(\tau) & =\tau G \quad(D L) \\
L(\tau) G & =I_{0} G+I_{1} \tau G+I_{2} \tau^{2} G+\cdots+I_{d} \tau^{d} G
\end{aligned}
$$

- depth-1 multiplications (for $L(\tau) \cdot R(\tau)$ and $H(\tau) \cdot T(\tau)$).

$$
\begin{gather*}
C\left(\tau_{1}\right)=\tau_{1} G ; C\left(\tau_{2}\right)=\tau_{2} G \\
C\left(\tau_{1}\right) \cdot C\left(\tau_{2}\right)=C\left(\tau_{1} \cdot \tau_{2}\right) \quad(?) \tag{?}\\
\underbrace{e\left(C\left(\tau_{1}\right), C\left(\tau_{2}\right)\right)}_{\text {product of commitments }}=\underbrace{Z^{\tau_{1} \cdot \tau_{2}} \cdot \tau_{2}}_{\substack{\text { new commitment to } \\
(\text { where } Z=e(G . G) \neq 1)}}
\end{gather*} \quad \text { (bilinear pairing) }
$$

Blind evaluation of QAP

Blind evaluation can be achieved with black-box pairings:

$$
\begin{aligned}
e(C(H(\tau)), C(T(\tau)) \cdot e(C(O(\tau)), C(1)) & =e(C(L(\tau)), C(R(\tau))) \\
e(H(\tau) G, T(\tau) G) \cdot e(O(\tau) G, G) & =e(L(\tau) G, R(\tau) G) \\
e(G, G)^{H(\tau) T(\tau)} \cdot e(G, G)^{O(\tau)} & =e(G, G)^{L(\tau) R(\tau)} \\
Z^{H(\tau) T(\tau)+O(\tau)} & =Z^{L(\tau) R(\tau)}
\end{aligned}
$$

Outline of contributions

Outline of contributions

- Blockchain limitations: confidentiality and scalability

Outline of contributions

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

Outline of contributions

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Outline of contributions

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]
- Proof composition for better confidentiality and scalability \rightarrow 2-chains and 2-cycles [CANS 2020, EuroCrypt 2022, DCC 2022]

Outline of contributions

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]
- Proof composition for better confidentiality and scalability \rightarrow 2-chains and 2-cycles [CANS 2020, EuroCrypt 2022, DCC 2022]
- Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Outline of contributions

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]
- Proof composition for better confidentiality and scalability $\rightarrow 2$-chains and 2-cycles [CANS 2020, EuroCrypt 2022, DCC 2022]
- Pairings in R1CS for fast generation of the composed proof [ACNS 2023]
- Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

Overview

(2) zk-SNARK
(3) SNARK-friendly curves
(4) SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

Instantiation

DL:

- $E: y^{2}=x^{3}+a x+b$ elliptic curve defined over \mathbb{F}_{q}, q a prime power.
- r prime divisor of $\# E\left(\mathbb{F}_{q}\right)=q+1-t, t$ Frobenius trace.

Instantiation

DL:

- $E: y^{2}=x^{3}+a x+b$ elliptic curve defined over \mathbb{F}_{q}, q a prime power.
- r prime divisor of $\# E\left(\mathbb{F}_{q}\right)=q+1-t, t$ Frobenius trace.

Pairing-friendly:

- small embedding degree k (smallest integer $k \in \mathbb{N}^{*}$ s.t. $r \mid q^{k}-1$).
- $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{q^{k}}\right)$ two groups of order r.
- $\mathbb{G}_{T} \subset \mathbb{F}_{q^{k}}^{*}$ group of r-th roots of unity.
- $\left(\mathbb{G}_{1},+\right)=\left\langle G_{1}\right\rangle,\left(\mathbb{G}_{2},+\right)=\left\langle G_{2}\right\rangle$ and $\left(\mathbb{G}_{T}, \times\right)$.
- pairing e: $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$.

Instantiation

DL:

- $E: y^{2}=x^{3}+a x+b$ elliptic curve defined over \mathbb{F}_{q}, q a prime power.
- r prime divisor of $\# E\left(\mathbb{F}_{q}\right)=q+1-t, t$ Frobenius trace.

Pairing-friendly:

- small embedding degree k (smallest integer $k \in \mathbb{N}^{*}$ s.t. $r \mid q^{k}-1$).
- $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{q^{k}}\right)$ two groups of order r.
- $\mathbb{G}_{T} \subset \mathbb{F}_{q^{k}}^{*}$ group of r-th roots of unity.
- $\left(\mathbb{G}_{1},+\right)=\left\langle G_{1}\right\rangle,\left(\mathbb{G}_{2},+\right)=\left\langle G_{2}\right\rangle$ and $\left(\mathbb{G}_{T}, \times\right)$.
- pairing $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$.

SNARK-friendly:

- $r-1 \equiv 0 \bmod 2^{L}$ for some large $L \in \mathbb{N}^{*}\left(\mathbb{F}_{r}\right.$ FFT-friendly)

Instantiation

DL:

- $E: y^{2}=x^{3}+a x+b$ elliptic curve defined over \mathbb{F}_{q}, q a prime power.
- r prime divisor of $\# E\left(\mathbb{F}_{q}\right)=q+1-t, t$ Frobenius trace.

Pairing-friendly:

- small embedding degree k (smallest integer $k \in \mathbb{N}^{*}$ s.t. $r \mid q^{k}-1$).
- $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{q^{k}}\right)$ two groups of order r.
- $\mathbb{G}_{T} \subset \mathbb{F}_{q^{k}}^{*}$ group of r-th roots of unity.
- pairing e: $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$.

SNARK-friendly:

- $r-1 \equiv 0 \bmod 2^{L}$ for some large $L \in \mathbb{N}^{*}\left(\mathbb{F}_{r}\right.$ FFT-friendly $)$

BLS12-381: q-bit $=381, r$-bit $=255, k=12, L=32$

SNARK-friendly curves from the literature

[D. F. Aranha, Y.EH, A. Guillevic - DCC 2022]

Curve	seed x	L	$\begin{gathered} r=\# \mathbb{G}_{1} \\ \text { (bits) } \end{gathered}$	$\begin{aligned} & \hline p, \mathbb{G}_{1} \\ & \text { (bits) } \end{aligned}$	$\begin{gathered} p^{k / d}, \mathbb{G}_{2} \\ \text { (bits) } \end{gathered}$	$\begin{aligned} & p \equiv 3 \\ & \bmod 4 \end{aligned}$	security \mathbb{G}_{1}	$\begin{aligned} & \text { (bits) } \\ & \mathbb{F}_{p^{k}}^{*} \end{aligned}$
$\begin{gathered} \text { BN-256 } \\ {[\mathrm{PHGR13]}} \end{gathered}$	$\begin{gathered} 1868033^{3} \\ \mathrm{HW}_{2-\mathrm{NAF}}(6 x+2)=19 \end{gathered}$	5	256	256	512	\checkmark	128	103
$\begin{gathered} \mathrm{BN}-254 \\ {\left[\mathrm{BFR}^{+} 13\right]} \end{gathered}$	$\begin{gathered} 2^{62}-2^{54}+2^{44} \\ \operatorname{HW}_{2-N A F}(6 x+2)=7 \end{gathered}$	45	254	254	508	\times	127	102
$\begin{aligned} & \text { GMV6-183 } \\ & {\left[\text { BCG }^{+} 13\right]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 0x8eed757d90615e40000000 } \\ \text { HW }(-26 x-2)=16 \\ \hline \end{gathered}$	31	181	183	549	NA	90	71
$\begin{gathered} \mathrm{BN}-254 \\ {[\mathrm{BCTV} 14 \mathrm{~b}]} \end{gathered}$	$\begin{gathered} 0 x 44 e 992 \mathrm{~b} 44 \mathrm{a} 6909 \mathrm{f} 1 \\ \mathrm{HW} \text { 2-NAF }(6 x+2)=22 \end{gathered}$	28	254	254	508	\checkmark	127	103
$\begin{gathered} \text { BLS12-381 } \\ \text { [Bow17] } \end{gathered}$	$\begin{gathered} -0 \mathrm{xd} 201000000010000 \\ H W(x)=6 \end{gathered}$	32	255	381	762	\checkmark	127	126

Families of SNARK-friendly curves [D. F. Aranha, Y.EH, A. Guillevic - DCC 2022]

$\begin{aligned} & \text { Family, } \\ & r, p \in \mathbb{N}, t \in \mathbb{Z} \end{aligned}$	$r \equiv 1 \bmod 2^{L}$	$\begin{gathered} p \equiv 3 \\ \bmod 4 \end{gathered}$	$\begin{gathered} \mathbb{G}_{2} \\ \text { coord. in } \end{gathered}$
$\begin{gathered} \mathrm{BN} \\ \operatorname{any} x \end{gathered}$	$\begin{aligned} x \equiv & 2570880382155688433 \bmod 2^{63} \Rightarrow 2^{64} \mid r-1 \\ & x \equiv 0 \bmod 2^{L-1} \Rightarrow 2^{L}\left\|r-1,2^{L}\right\| p-1 \end{aligned}$	$\begin{aligned} & v \\ & x \end{aligned}$	$\mathbb{F}_{p^{2}}$
$\begin{gathered} \text { BLS12 } \\ x \equiv 1 \\ \bmod 3 \end{gathered}$	$\begin{gathered} x \equiv 1 \bmod 3 \cdot 2^{L-1} \Rightarrow 2^{L}\left\|r-1,2^{L-1}\right\| p-1 \\ x \equiv 2^{L-1}-1 \bmod 3 \cdot 2^{L-1} \Rightarrow 2^{L}\|r-1,6\| p-1 \\ x \equiv 2^{L / 2} \bmod 3 \cdot 2^{L / 2} \Rightarrow 2^{L}\|r-1,6\| p-1 \end{gathered}$	x	$\mathbb{F}_{p^{2}}$
$\begin{gathered} \text { BLS24 } \\ x \equiv 1 \\ \bmod 3 \end{gathered}$	$\begin{gathered} x \equiv 1 \bmod 3 \cdot 2^{L-2} \Rightarrow 2^{L}\left\|r-1,2^{L-2}\right\| p-1 \\ x \equiv 2^{L-1}-1 \bmod 3 \cdot 2^{L-2} \Rightarrow 2^{L}\|r-1,6\| p-1 \\ x \equiv 2^{L / 4} \bmod 3 \cdot 2^{L / 4} \Rightarrow 2^{L}\|r-1,6\| p-1 \end{gathered}$	$\begin{aligned} & x \\ & \checkmark \\ & y \end{aligned}$	$\mathbb{F}_{p^{4}}$
MNT4, $t=x+1$	$x \equiv 0 \bmod 2^{L / 2} \Rightarrow 2^{L}\left\|r-1,2^{L / 2}\right\| p-1$	x	$\mathbb{F}_{p^{2}}$
MNT6	$x \equiv 0 \bmod 2^{L-1} \Rightarrow 2^{L}\left\|r-1,2^{2 L}\right\| p-1$	x	$\mathbb{F}_{p^{3}}$
$\begin{gathered} \hline \operatorname{GMV} 6(h=4) \\ \text { any } x \\ \hline \end{gathered}$	$x \equiv 0 \bmod 2^{L-1} \Rightarrow 2^{L}\left\|r-1,2^{L-1}\right\| p-1$	NA	$\mathbb{F}_{p^{3}}$
$\begin{gathered} \text { KSS16 } \\ (x \equiv \pm 25 \bmod 70) \end{gathered}$	$\begin{gathered} \pm 14398186520986421885, \pm 37456616613123361405 \\ \bmod 35 \cdot 2^{62} \Rightarrow 2^{64} \mid r-1, p \equiv 1 \bmod 4 \\ \hline \end{gathered}$	x	$\mathbb{F}_{p^{4}}$
$\begin{gathered} \text { KSS18 } \\ (x \equiv 14 \bmod 42) \end{gathered}$	$x=14 \cdot 2^{L / 3} \bmod 42 \cdot 2^{L / 3} \Rightarrow 2^{L}\|r-1,12\| p-1$	NA	$\mathbb{F}_{p^{3}}$

New SNARK-friendly curves

[D. F. Aranha, Y.EH, A. Guillevic - DCC 2022]

| Curve | x | L | $r=\# \mathbb{G}_{1}$
 $($ bits $)$ | p, \mathbb{G}_{1}
 (bits) | $p^{k / d}, \mathbb{G}_{2}$
 (bits) | $p \equiv 3$
 $\bmod 4$ | security (bits)
 \mathbb{G}_{1} $\mathbb{F}_{p^{*}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BN383 | 0x49e69d16fdc80216226909f1
 HW $_{2-\text { NAF }}(6 x+2)=30$ | 44 | 383 | 383 | 766 | \checkmark | $191 \quad 123$ |
| BLS24-317 | 0xd9018000
 HW $_{2-N A F}(x)=6$ | 60 | 255 | 317 | 1268 | \checkmark | 127160 |
| KSS16-329 | 0x38fab7583
 HW $(x)=12$ | 19 | 255 | 329 | 1316 | \checkmark | 127140 |
| KSS18-345 | 0xc0c44000000
 HW $(x)=6$ | 78 | 254 | 345 | 690 | NA | 127150 |

https://github.com/yelhousni/gnark-crypto

Overview

(2) zk-SNARK
(3) SNARK-friendly curves
4) SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

A pairing-based SNARK

Example: Groth16 [Gro16]

Given an instance $\Phi=\left(a_{0}, \ldots, a_{\ell}\right) \in \mathbb{F}_{r}^{\ell}$ of a public NP program F

A pairing-based SNARK

Example: Groth16 [Gro16]

Given an instance $\Phi=\left(a_{0}, \ldots, a_{\ell}\right) \in \mathbb{F}_{r}^{\ell}$ of a public NP program F

- Setup: $(p k, v k) \leftarrow S\left(F, \tau, 1^{\lambda}\right)$ where

$$
v k=\left(v k_{\alpha, \beta},\left\{v k_{\pi_{i}}\right\}_{i=0}^{\ell}, v k_{\gamma}, v k_{\delta}\right) \in \mathbb{G}_{T} \times \mathbb{G}_{1}^{\ell+1} \times \mathbb{G}_{2} \times \mathbb{G}_{2}
$$

A pairing-based SNARK

Example: Groth16 [Gro16]

Given an instance $\Phi=\left(a_{0}, \ldots, a_{\ell}\right) \in \mathbb{F}_{r}^{\ell}$ of a public NP program F

- Setup: $(p k, v k) \leftarrow S\left(F, \tau, 1^{\lambda}\right)$ where

$$
v k=\left(v k_{\alpha, \beta},\left\{v k_{\pi_{i}}\right\}_{i=0}^{\ell}, v k_{\gamma}, v k_{\delta}\right) \in \mathbb{G}_{T} \times \mathbb{G}_{1}^{\ell+1} \times \mathbb{G}_{2} \times \mathbb{G}_{2}
$$

- Prove: $\pi \leftarrow P(\Phi, w, p k)$ where

$$
\pi=(A, B, C) \in \mathbb{G}_{1} \times \mathbb{G}_{2} \times \mathbb{G}_{1}
$$

A pairing-based SNARK

Example: Groth16 [Gro16]

Given an instance $\Phi=\left(a_{0}, \ldots, a_{\ell}\right) \in \mathbb{F}_{r}^{\ell}$ of a public NP program F

- Setup: $(p k, v k) \leftarrow S\left(F, \tau, 1^{\lambda}\right)$ where

$$
v k=\left(v k_{\alpha, \beta},\left\{v k_{\pi_{i}}\right\}_{i=0}^{\ell}, v k_{\gamma}, v k_{\delta}\right) \in \mathbb{G}_{T} \times \mathbb{G}_{1}^{\ell+1} \times \mathbb{G}_{2} \times \mathbb{G}_{2}
$$

- Prove: $\pi \leftarrow P(\Phi, w, p k)$ where

$$
\begin{equation*}
\pi=(A, B, C) \in \mathbb{G}_{1} \times \mathbb{G}_{2} \times \mathbb{G}_{1} \tag{1}
\end{equation*}
$$

- Verify: $0 / 1 \leftarrow V(\Phi, \pi, v k)$ where V is

$$
\begin{equation*}
e(A, B)=v k_{\alpha, \beta} \cdot e\left(v k_{x}, v k_{\gamma}\right) \cdot e\left(C, v k_{\delta}\right) \quad\left(O_{\lambda}(|\Phi|)\right) \tag{1}
\end{equation*}
$$

and $v k_{x}=\sum_{i=0}^{\ell}\left[a_{i}\right] v k_{\pi_{i}}$ depends only on the instance Φ and $v k_{\alpha, \beta}=e\left(v k_{\alpha}, v k_{\beta}\right)$ can be computed in the trusted setup for $\left(v k_{\alpha}, v k_{\beta}\right) \in \mathbb{G}_{1} \times \mathbb{G}_{2}$.

Proof composition: why?

Aggregation:

Proof composition: why?

Decentralized private computation (DPC):

Proof composition: how?

F any program is expressed in \mathbb{F}_{r}
P proving is performed over \mathbb{G}_{1} (and \mathbb{G}_{2}) (of order r)
V verification (eq. 1) is done in $\mathbb{F}_{q^{k}}^{*}$
F_{V} program of V is natively expressed in $\mathbb{F}_{q^{k}}^{*}$ not \mathbb{F}_{r}

Proof composition: how?

F any program is expressed in \mathbb{F}_{r}
P proving is performed over \mathbb{G}_{1} (and \mathbb{G}_{2}) (of order r)
V verification (eq. 1) is done in $\mathbb{F}_{q^{k}}^{*}$
F_{V} program of V is natively expressed in $\mathbb{F}_{q^{k}}^{*}$ not \mathbb{F}_{r}

- $1^{\text {st }}$ attempt: choose a curve for which $q=r$ (impossible)

Proof composition: how?

F any program is expressed in \mathbb{F}_{r}
P proving is performed over \mathbb{G}_{1} (and \mathbb{G}_{2}) (of order r)
V verification (eq. 1) is done in $\mathbb{F}_{q^{k}}^{*}$
F_{V} program of V is natively expressed in $\mathbb{F}_{q^{k}}^{*}$ not \mathbb{F}_{r}

- $1^{\text {st }}$ attempt: choose a curve for which $q=r$ (impossible)
- $2^{\text {nd }}$ attempt: simulate \mathbb{F}_{q} operations via \mathbb{F}_{r} operations ($\times \log q$ blowup)

Proof composition: how?

F any program is expressed in \mathbb{F}_{r}
P proving is performed over \mathbb{G}_{1} (and \mathbb{G}_{2}) (of order r)
V verification (eq. 1) is done in $\mathbb{F}_{q^{k}}^{*}$
F_{V} program of V is natively expressed in $\mathbb{F}_{q^{k}}^{*}$ not \mathbb{F}_{r}

- $1^{\text {st }}$ attempt: choose a curve for which $q=r$ (impossible)
- $2^{\text {nd }}$ attempt: simulate \mathbb{F}_{q} operations via \mathbb{F}_{r} operations ($\times \log q$ blowup)
- $3^{\text {rd }}$ attempt: use a cycle/chain of pairing-friendly elliptic curves $\left[\mathrm{CFH}^{+} 15, \mathrm{BCTV} 14 \mathrm{a}, \mathrm{BCG}^{+} 20\right]$

2-cycles and 2-chains

A 2-cycle of elliptic curves:

A 2-chain of elliptic curves:

2-chains of elliptic curves

Given p, search for a pairing-friendly curve E_{1} of order $h \cdot p$ over a field \mathbb{F}_{q}

SNARK-friendly curves, 2-cycles and 2-chains

- SNARK
- E / \mathbb{F}_{q}
- pairing-friendly
- $2^{L} \mid r-1$
- Recursive SNARK (2-cycle)
- E_{0} / \mathbb{F}_{p} and E_{1} / \mathbb{F}_{q}
- both pairing-friendly
- $\# E_{1}\left(\mathbb{F}_{q}\right)=p$ and $\# E_{0}\left(\mathbb{F}_{p}\right)=q$
- $2^{L} \mid p-1$
- $2^{L} \mid q-1$
- Recursive SNARK (2-chain)
- E_{0} / \mathbb{F}_{p}
- pairing-friendly
- $2^{L} \mid r_{0}-1\left(r_{0} \mid \# E_{0}\left(\mathbb{F}_{p}\right)\right)$
- $2^{L} \mid p-1$
- E_{1} / \mathbb{F}_{q}
- pairing-friendly
- $p \mid \# E_{1}\left(\mathbb{F}_{q}\right)$

2-chains: outer curve E_{1} / \mathbb{F}_{q}

- q is a prime or a prime power
- t is relatively prime to q
- r is prime r is a fixed chosen prime
- $\left.r \mid q^{k}-1\right\}$ s.t. $r \mid q+1-t$
- $r|q+1 \quad t|$ and $r \mid q^{k}-1$
- $4 q-t^{2}=D y^{2}$ (for $D<10^{12}$) and some integer y

2-chains: outer curve E_{1} / \mathbb{F}_{q}

- q is a prime or a prime power
- t is relatively prime to q
- r is prime r is a fixed chosen prime
- $\left.r \mid q^{k}-1\right\}$ s.t. $r \mid q+1-t$
- $r \mid q+1 \quad t$ and $r \mid q^{k}-1$
- $4 q-t^{2}=D y^{2}\left(\right.$ for $D<10^{12}$) and some integer y

Algorithm: Cocks-Pinch method
Fix k and D and choose a prime r s.t. $k \mid r-1$ and $\left(\frac{-D}{r}\right)=1$;
Compute $t=1+x^{(r-1) / k}$ for x a generator of $(\mathbb{Z} / r \mathbb{Z})^{\times}$;
Compute $y=(t-2) / \sqrt{-D} \bmod r$;
Lift t and y in \mathbb{Z};
Compute $q=\left(t^{2}+D y^{2}\right) / 4($ in $\mathbb{Q})$;

2-chains: outer curve E_{1} / \mathbb{F}_{q}

- $\rho=\log _{2} q / \log _{2} r \approx 2$ (because $q=f\left(t^{2}, y^{2}\right)$ and $t, y \stackrel{\$}{\leftarrow} \bmod r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

2-chains: outer curve E_{1} / \mathbb{F}_{q}

- $\rho=\log _{2} q / \log _{2} r \approx 2$ (because $q=f\left(t^{2}, y^{2}\right)$ and $t, y \stackrel{\$}{\leftarrow} \bmod r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm: Brezing-Weng method
Fix k and D and choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient s.t. $\sqrt{-D}$ and the primitive k-th root of unity ζ_{k} are in $K=\mathbb{Q}[x] / r(x)$; Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_{k}+1$ in K; Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $\left(\zeta_{k}-1\right) / \sqrt{-D}$ in K; Compute $q(x)=\left(t^{2}(x)+D y^{2}(x)\right) / 4$ in $\mathbb{Q}[x]$;

2-chains: outer curve E_{1} / \mathbb{F}_{q}

- $\rho=\log _{2} q / \log _{2} r \approx 2$ (because $q=f\left(t^{2}, y^{2}\right)$ and $t, y \stackrel{\$}{\leftarrow} \bmod r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm: Brezing-Weng method
Fix k and D and choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient s.t. $\sqrt{-D}$ and the primitive k-th root of unity ζ_{k} are in $K=\mathbb{Q}[x] / r(x)$; Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_{k}+1$ in K; Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $\left(\zeta_{k}-1\right) / \sqrt{-D}$ in K; Compute $q(x)=\left(t^{2}(x)+D y^{2}(x)\right) / 4$ in $\mathbb{Q}[x]$;

- $\rho=2 \max (\operatorname{deg} t(x), \operatorname{deg} y(x)) / \operatorname{deg} r(x)<2$
- $r(x), q(x), t(x)$ but is $q(x)$ irreducible for $r(x)=p(x)$?

2-chains: outer curve E_{1} / \mathbb{F}_{q}

[Y.EH, A. Guillevic - CANS 2020]
(1) Cocks-Pinch method

- $k=6$ and $-D=-3 \Longrightarrow 128$-bit security, \mathbb{G}_{2} coordinates in \mathbb{F}_{q} (pairing over \mathbb{F}_{q} instead if $\mathbb{F}_{q^{3}}$), GLV multiplication over \mathbb{G}_{1} and \mathbb{G}_{2}
- restrict search to $\operatorname{size}(q) \leq 768$ bits \Longrightarrow smallest machine-word size

2-chains: outer curve E_{1} / \mathbb{F}_{q}

[Y.EH, A. Guillevic - CANS 2020]
(1) Cocks-Pinch method

- $k=6$ and $-D=-3 \Longrightarrow 128$-bit security, \mathbb{G}_{2} coordinates in \mathbb{F}_{q} (pairing over \mathbb{F}_{q} instead if $\mathbb{F}_{q^{3}}$), GLV multiplication over \mathbb{G}_{1} and \mathbb{G}_{2}
- restrict search to $\operatorname{size}(q) \leq 768$ bits \Longrightarrow smallest machine-word size
(2) Brezing-Weng method
- choose $r(x)=q_{\text {BLS12 }}(x)$
- $q(x)=\left(t^{2}(x)+3 y^{2}(x)\right) / 4$ factors $\Longrightarrow q\left(x_{0}\right)$ cannot be prime
- lift in $\mathbb{Z} t=r \times h_{t}+t\left(x_{0}\right)$ and $y=r \times h_{y}+y\left(x_{0}\right)$ [FK19, GMT20]

2-chains: outer curve E_{1} / \mathbb{F}_{q}

[Y.EH, A. Guillevic - CANS 2020]
$E: y^{2}=x^{3}-1$ over \mathbb{F}_{q} of 761 -bit with seed $x_{0}=0$ x8508c00000000 and polynomials:
Our curve, $k=6, D=3, r=q_{\text {BLS12 }}$
$r(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3=q_{\text {BLS12-377 }}(x)$
$t(x)=x^{5}-3 x^{4}+3 x^{3}-x+3+h_{t} r(x)$
$y(x)=\left(x^{5}-3 x^{4}+3 x^{3}-x+3\right) / 3+h_{y} r(x)$
$q(x)=\left(t^{2}+3 y^{2}\right) / 4$
$q_{h_{t}=13, h_{y}=9}(x)=\left(103 x^{12}-379 x^{11}+250 x^{10}+691 x^{9}-911 x^{8}\right.$
$\left.-79 x^{7}+623 x^{6}-640 x^{5}+274 x^{4}+763 x^{3}+73 x^{2}+254 x+229\right) / 9$

SNARK-0: inner curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $p-1 \equiv r-1 \equiv 0 \bmod 2^{L}$ for large input $L \in \mathbb{N}^{*}(F F T s)$
\rightarrow BLS $(k=12)$ family of ≈ 384 bits with
seed $x \equiv 1 \bmod 3 \cdot 2^{L}$

SNARK-0: inner curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $p-1 \equiv r-1 \equiv 0 \bmod 2^{L}$ for large input $L \in \mathbb{N}^{*}(F F T s)$
\rightarrow BLS $(k=12)$ family of ≈ 384 bits with seed $x \equiv 1 \bmod 3 \cdot 2^{L}$

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{C H}_{4} \nmid / \| \nmid t|t|$ and pairing
- $p-1 \equiv r-1 \equiv 0 \bmod 2^{L}$ for large $L \in \mathbb{N}^{*}$ (FFTs)
\rightarrow BLS $(k=24)$ family of ≈ 320 bits with seed $x \equiv 1 \bmod 3 \cdot 2^{L}$

SNARK-1: outer curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $r=p\left(r-1 \equiv 0 \bmod 2^{L}\right)$
\rightarrow BW $(k=6)$ family of ≈ 768 bits with $(t$ $\bmod x) \bmod r \equiv 0$ or 3

SNARK-1: outer curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ and pairing
- $r=p\left(r-1 \equiv 0 \bmod 2^{L}\right)$

Universal SNARK

- 128-bit security
- pairing-friendly

- $r=p\left(r-1 \equiv 0 \bmod 2^{L}\right)$
\rightarrow BW $(k=6)$ family of ≈ 768 bits with (t $\bmod x) \bmod r \equiv 0$ or 3
\rightarrow BW $(k=6)$ family of ≈ 704 bits with $(t$ $\bmod x) \bmod r \equiv 0$ or 3
$\rightarrow \mathrm{CP}(k=8)$ family of ≈ 640 bits
$\rightarrow \mathrm{CP}(k=12)$ family of ≈ 640 bits
All \mathbb{G}_{i} formulae and pairings are given in terms of x and some $h_{t}, h_{y} \in \mathbb{N}$.

Implementation and benchmark

[Y.EH, A. Guillevic - EuroCrypt 2022]
Short list of 2-chains with some additional nice engineering properties:

- Groth16: BLS12-377 and BW6-761
- Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Groth16 (ms)

	S	P	V
BLS12-377	387	34	1
BLS24-315	501	54	4
BW6-761	1226	114	9
BW6-633	710	69	6
BW6-672	840	74	7

Table: Universal (ms)

	S	P	V
BLS12-377	87	215	4
BLS24-315	76	173	1
BW6-761	294	634	9
BW6-633	170	428	6
BW6-672	190	459	7

(on aAMD EPYC 7R32 AWS (c5a.24×large) machine)
https://github.com/ConsenSys/gnark-crypto

Overview

(2) zk-SNARK
(3) SNARK-friendly curves
(4) SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

Cost of pairing-based SNARKs

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication gates, a =number of addition gates and $\ell=$ number of public inputs. $\mathrm{M}_{\mathbb{G}}=$ multiplication in \mathbb{G} and $\mathrm{P}=$ pairing.

	Setup	Prove	Verify
Groth16	$3 n \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$(4 n-\ell) \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$3 \mathrm{P}, \ell \mathrm{M}_{\mathbb{G}_{1}}$
Universal	$d_{\geq n+a} \mathrm{M}_{\mathbb{G}_{1}}, 1 \mathrm{M}_{\mathbb{G}_{2}}$	$9(n+a) \mathrm{M}_{\mathbb{G}_{1}}$	$2 \mathrm{P}, 18 \mathrm{M}_{\mathbb{G}_{1}}$
(PLONK-KZG)			

Cost of pairing-based SNARKs

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication gates, a =number of addition gates and $\ell=$ number of public inputs. $\mathrm{M}_{\mathbb{G}}=$ multiplication in \mathbb{G} and $\mathrm{P}=$ pairing.

	Setup	Prove	Verify
Groth16	$3 n \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$(4 n-\ell) \mathrm{M}_{\mathbb{G}_{1}}, n \mathrm{M}_{\mathbb{G}_{2}}$	$3 \mathrm{P}, \ell \mathrm{M}_{\mathbb{G}_{1}}$
Universal	$d_{\geq n+a} \mathrm{M}_{\mathbb{G}_{1}}, 1 \mathrm{M}_{\mathbb{G}_{2}}$	$9(n+a) \mathrm{M}_{\mathbb{G}_{1}}$	$2 \mathrm{P}, 18 \mathrm{M}_{\mathbb{G}_{1}}$
(PLONK-KZG)			

$$
F_{V}: \text { program that checks } V(\text { eq. } 1)(\ell=1, n=90000)
$$

Pairings out-circuit

ate pairing

$$
\begin{aligned}
e: \mathbb{G}_{1} \times \mathbb{G}_{2} & \rightarrow \mathbb{G}_{T} \\
(P, Q) & \mapsto f_{t-1, Q}(P)^{\left(q^{k}-1\right) / r}
\end{aligned}
$$

- $f_{t-1, Q}(P)$ is the Miller function
- $f \mapsto f\left(q^{k}-1\right) / r$ is the final exponentiation

Examples: For polynomial families in the seed x,
BLS12 $e(P, Q)=f_{x, Q}(P)^{\left(q^{12}-1\right) / r}$
BLS24 $e(P, Q)=f_{x, Q}(P)^{\left(q^{24}-1\right) / r}$
[BN06, AKL ${ }^{+}$11, ABLR14, ABLR14, Sco19] [HHT20, AFK ${ }^{+}$13, GF16, GS10, Kar13]

Pairings out-circuit: Miller algorithm

```
Algorithm: MillerLoop \((s, P, Q)\)
Output: \(m=f_{s, Q}(P)\)
\(m \leftarrow 1 ; R \leftarrow Q\)
for \(b\) from the second most significant bit of \(s\) to the least do
    \(\ell \leftarrow \ell_{R, R}(P) ; R \leftarrow[2] R ; v \leftarrow v_{[2] R}(P)\)
    \(m \leftarrow m^{2} \cdot \ell / v\)
    if \(b=1\) then
        \(\ell \leftarrow \ell_{R, Q}(P) ; R \leftarrow R+Q ; v \leftarrow v_{R+Q}(P)\)
        \(m \leftarrow m \cdot \ell / v\)
return \(m\)
```


Pairings out-circuit: Miller algorithm

```
Algorithm: MillerLoop \((s, P, Q)\)
Output: \(m=f_{s, Q}(P)\)
\(m \leftarrow 1 ; R \leftarrow Q\)
for \(b\) from the second most significant bit of \(s\) to the least do
    \(\ell \leftarrow \ell_{R, R}(P) ; R \leftarrow[2] R ;\)
    \(m \leftarrow m^{2} \cdot \ell\)
    if \(b=1\) then
        \(\ell \leftarrow \ell_{R, Q}(P) ; R \leftarrow R+Q ;\)
        \(m \leftarrow m \cdot \ell\)
return \(m\)
```


Pairings out-circuit: Miller algorithm

```
Algorithm: MillerLoop \((s, P, Q)\)
Output: \(m=f_{s, Q}(P)\)
\(m \leftarrow 1 ; R \leftarrow Q\)
for \(b\) from the second most significant bit of \(s\) to the least do
    \(\ell \leftarrow \ell_{R, R}(P) ; R \leftarrow[2] R ;\)
    \(m \leftarrow m^{2} \cdot \ell\)
    if \(b=1\) then
        \(\ell \leftarrow \ell_{R, Q}(P) ; R \leftarrow R+Q ;\)
        \(m \leftarrow m \cdot \ell\)
return m
Doubling Step
```


Pairings in-circuit (R1CS)

[Y.EH - ACNS 2023]

	Time	Constraints
BLS12-377	$<1 \mathrm{~ms}$	$\approx \mathbf{8 0} \mathbf{0 0 0}$

Inverses, in R1CS, cost (almost) as much as multiplications !

- Miller loop:
- Affine coordinates $\rightarrow \approx 19 k$ (arkworks)
- Division in extension fields
- Double-and-Add in affine
- lines evaluations ($1 / \mathrm{y}, \mathrm{x} / \mathrm{y}$)
- Loop with short addition chains
- Torus-based arithmetic
- Final Exponentiation:
- Karatsuba cyclotomic squarings
- Torus-based arithmetic
- Exp. with short addition chains
$19 \mathrm{k} \rightarrow \approx 11 \mathrm{k}$ (gnark)

Pairings in-circuit (R1CS)

[Y.EH - ACNS 2023]
e.g. For BLS12-377,
https://github.com/ConsenSys/gnark

	Constraints
Pairing	$\mathbf{1 1 5 3 5}$
Groth16 verifier	19378
BLS sig. verifier	14888
KZG verifier	20679

For BLS24-315, a pairing is 27608 contraints .
More optimizations in mind:

- Quadruple-and-Add Miller loop [CBGW10]
- Fixed argument Miller loop (KZG, BLS sig) [CS10]
- Longa's sums of products Mul [Lon22]

Overview

(1) Motivation
(2) zk-SNARK
(3) SNARK-friendly curves
(4) SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

Multi-Scalar-Multiplication (MSM)

[Y.EH and G. Botrel - In submission]
$a_{1} P_{1}+a_{2} P_{2}+\cdots+a_{n} P_{n}$ with $P_{i} \in \mathbb{G}_{1}\left(\right.$ or $\left.\mathbb{G}_{2}\right)$ and $a_{i} \in \mathbb{F}_{r}(|r|=\mathrm{b}$-bit $)$

- Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed $c \leq b$
- Step 2: solve each c-bit MSM efficiently
- Step 3: combine the c-bit MSMs into the final b-bit MSM

Multi-Scalar-Multiplication (MSM)

[Y.EH and G. Botrel - In submission]
$a_{1} P_{1}+a_{2} P_{2}+\cdots+a_{n} P_{n}$ with $P_{i} \in \mathbb{G}_{1}\left(\right.$ or $\left.\mathbb{G}_{2}\right)$ and $a_{i} \in \mathbb{F}_{r}(|r|=\mathrm{b}$-bit $)$

- Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed $c \leq b$
- Step 2: solve each c-bit MSM efficiently
- Step 3: combine the c-bit MSMs into the final b-bit MSM
\rightarrow Overall cost is: $b / c\left(n+2^{c-1}\right)+(b-c-b / c-1)$
- Mixed re-additions: to accumulate P_{i} in the c-bit MSM buckets with cost $b / c\left(n-2^{c-1}+1\right)$
- Additions: to combine the bucket sums with cost $b / c\left(2^{c}-3\right)$
- Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost $b-c+b / c-1$
- $b / c-1$ additions and
- $b-c$ doublings

Our MSM code vs. the ZPrize baseline (BLS12-377 \mathbb{G}_{1})

[Y.EH and G. Botrel - In submission]

- All inner curves have a twisted Edwards form $-y^{2}+x^{2}=1+d x^{2} y^{2}$
- We use a custom coordinates system $(y-x: y+x: 2 d x y) \rightarrow$ (7m per addition)
- 2-NAF buckets, Parallelism, software optimizations...

Overview

(2) zk-SNARK
(3) SNARK-friendly curves
4. SNARK-friendly 2-chains
(5) Pairings in R1CS
(6) Multi-scalar multiplication
(7) Conclusion

Ognark

Q celo

\wedge Aleo EY

consensys

Summary

Summary

- Blockchain limitations: confidentiality and scalability

Summary

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

Summary

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Summary

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]
- Proof composition for better confidentiality and scalability \rightarrow 2-chains and 2-cycles [CANS 2020, EuroCrypt 2022, DCC 2022]

Summary

- Blockchain limitations: confidentiality and scalability
- pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]
- Proof composition for better confidentiality and scalability \rightarrow 2-chains and 2-cycles [CANS 2020, EuroCrypt 2022, DCC 2022]
- Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Summary

- Blockchain limitations: confidentiality and scalability
- pairing-based $z k-S N A R K s$ are a solution (constant-size proof and fast verification)
- What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]
- Proof composition for better confidentiality and scalability $\rightarrow 2$-chains and 2-cycles [CANS 2020, EuroCrypt 2022, DCC 2022]
- Pairings in R1CS for fast generation of the composed proof [ACNS 2023]
- Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

Perspectives

- Is it possible to find a silver bullet construction of elliptic curves that can address all the efficiency/security requirements?
- Are there more efficient cycles of pairing-friendly curves? How to generate them?

Perspectives

- Is it possible to find a silver bullet construction of elliptic curves that can address all the efficiency/security requirements?
- Are there more efficient cycles of pairing-friendly curves? How to generate them?
- Can we get rid of the FFT-friendliness?
- Field-agnostic SNARKs [Brakedown, Orion, Nova, Hyperplonk]
- FFT over non-smooth fields [ECFFT]

References I

Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jefferson E. Ricardini.
The realm of the pairings.
In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 3-25. Springer, Heidelberg, August 2014.

嗇 Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and Francisco Rodríguez-Henríquez.
Implementing pairings at the 192-bit security level.
In Michel Abdalla and Tanja Lange, editors, PAIRING 2012, volume 7708 of LNCS, pages 177-195. Springer, Heidelberg, May 2013.

References II

(iego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio Cesar López-Hernández.
Faster explicit formulas for computing pairings over ordinary curves.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 48-68. Springer, Heidelberg, May 2011.

围 Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90-108. Springer, Heidelberg, August 2013.

References III

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059-1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

围 Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 276-294. Springer, Heidelberg, August 2014.
[Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann architecture.
In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781-796. USENIX Association, August 2014.

References IV

Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael Walfish.
Verifying computations with state.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP '13, pages 341-357, New York, NY, USA, 2013. Association for Computing Machinery.
ePrint with major differences at ePrint 2013/356.
(Paulo S. L. M. Barreto and Michael Naehrig.
Pairing-friendly elliptic curves of prime order.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319-331. Springer, Heidelberg, August 2006.

References V

围 Sean Bowe．
BLS12－381：New zk－SNARK elliptic curve construction．
Zcash blog，March 112017.
https：／／blog．z．cash／new－snark－curve／．
庫 Craig Costello，Colin Boyd，Juan Manuel González Nieto，and Kenneth Koon－Ho Wong． Avoiding full extension field arithmetic in pairing computations．
In Daniel J．Bernstein and Tanja Lange，editors，AFRICACRYPT 10，volume 6055 of LNCS，pages 203－224．Springer，Heidelberg，May 2010.

围 Alessandro Chiesa，Lynn Chua，and Matthew Weidner． On cycles of pairing－friendly elliptic curves． SIAM Journal on Applied Algebra and Geometry，3（2）：175－192， 2019.

References VI

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253-270. IEEE Computer Society, 2015. ePrint 2014/976.

图 Craig Costello and Douglas Stebila.
Fixed argument pairings.
In Michel Abdalla and Paulo S. L. M. Barreto, editors, LATINCRYPT 2010, volume 6212 of LNCS, pages 92-108. Springer, Heidelberg, August 2010.

References VII

Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery.
Fast elliptic curve arithmetic and improved Weil pairing evaluation.
In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 343-354. Springer, Heidelberg, April 2003.

围 Georgios Fotiadis and Elisavet Konstantinou.
TNFS resistant families of pairing-friendly elliptic curves.
Theoretical Computer Science, 800:73-89, 31 December 2019.
(David Freeman, Michael Scott, and Edlyn Teske.
A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224-280, April 2010.

References VIII

Loubna Ghammam and Emmanuel Fouotsa.
On the computation of the optimal ate pairing at the 192-bit security level.
Cryptology ePrint Archive, Report 2016/130, 2016.
https://eprint.iacr.org/2016/130.
围 Aurore Guillevic, Simon Masson, and Emmanuel Thomé.
Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation.
Des. Codes Cryptogr., 88:1047-1081, March 2020.
围 Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305-326. Springer, Heidelberg, May 2016.

References IX

直 Robert Granger and Michael Scott.
Faster squaring in the cyclotomic subgroup of sixth degree extensions.
In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 209-223. Springer, Heidelberg, May 2010.

Daiki Hayashida, Kenichiro Hayasaka, and Tadanori Teruya.
Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic curves.
Cryptology ePrint Archive, Report 2020/875, 2020. https://eprint.iacr.org/2020/875.

易 Koray Karabina.
Squaring in cyclotomic subgroups.
Math. Comput., 82(281):555-579, 2013.

References X

囯 Patrick Longa.
Efficient algorithms for large prime characteristic fields and their application to bilinear pairings and supersingular isogeny-based protocols.
Cryptology ePrint Archive, Report 2022/367, 2022.
https://eprint.iacr.org/2022/367.
(Michael Naehrig, Paulo S. L. M. Barreto, and Peter Schwabe.
On compressible pairings and their computation.
In Serge Vaudenay, editor, AFRICACRYPT 08, volume 5023 of LNCS, pages 371-388. Springer, Heidelberg, June 2008.

围 Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation.
In 2013 IEEE Symposium on Security and Privacy, pages 238-252. IEEE Computer Society Press, May 2013.

References XI

囯 Karl Rubin and Alice Silverberg.
Torus-based cryptography.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 349-365. Springer, Heidelberg, August 2003.

围 Michael Scott.
Pairing implementation revisited.
Cryptology ePrint Archive, Report 2019/077, 2019. https://eprint.iacr.org/2019/077.

Overview

(8) Co-factor clearing and subgroup membership
(9) Pairings in R1CS (details)
(10) BLS24-317 vs. BLS12-381
(11) Cycles (details)

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- Pairing groups: $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} are sub-groups of some prime order r.
- They are defined over some larger groups of composite orders $c_{1,2, T} \times r$ co-factors

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- Pairing groups: $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} are sub-groups of some prime order r.
- They are defined over some larger groups of composite orders $\underbrace{}_{1,2, T} \times r$ co-factors
Let P be a random element of order $c_{1} \times r$
- Co-factor clearing: $P^{\prime} \in \mathbb{G}_{1} \leftarrow\left[c_{1}\right] P$

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- Pairing groups: $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} are sub-groups of some prime order r.
- They are defined over some larger groups of composite orders $\underbrace{c_{1,2, T}} \times r$ co-factors

Let P be a random element of order $c_{1} \times r$

- Co-factor clearing: $P^{\prime} \in \mathbb{G}_{1} \leftarrow\left[c_{1}\right] P$

Let Q be a random element of order $c_{1,2, T} \times r$

- Subgroup membership testing: $[r] Q \stackrel{?}{=} \mathcal{O}$

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

Proposition (\mathbb{G}_{1} co-factor clearing)

Many curve families have the \mathbb{G}_{1} cofactor of the form $c_{1}=3 \ell^{2}$. To clear this cofactor, the map $P \mapsto[3 \ell] P$ is sufficient for all curves in [FST10] except KSS and 6.6 where $k \equiv 2,3 \bmod 6$.

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

Proposition (\mathbb{G}_{1} co-factor clearing)

Many curve families have the \mathbb{G}_{1} cofactor of the form $c_{1}=3 \ell^{2}$. To clear this cofactor, the map $P \mapsto[3 \ell] P$ is sufficient for all curves in [FST10] except KSS and 6.6 where $k \equiv 2,3 \bmod 6$.

Theorem (\mathbb{G}_{1} and \mathbb{G}_{2} membership testing)

Let $q^{\prime}=q$ or resp. q^{k} and $c^{\prime}=c_{1}$ or resp. c_{2}. If ψ acts as the multiplication by λ on $E\left(\mathbb{F}_{q^{\prime}}\right)[r]$ and $\operatorname{gcd}\left(\chi(\lambda), c^{\prime}\right)=1$ then

$$
\psi(Q)=[\lambda] Q \Longleftrightarrow Q \in E\left(\mathbb{F}_{q^{\prime}}\right)[r]
$$

with χ the characteristic polynomial of ψ.

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

Proposition (\mathbb{G}_{1} co-factor clearing)

Many curve families have the \mathbb{G}_{1} cofactor of the form $c_{1}=3 \ell^{2}$. To clear this cofactor, the map $P \mapsto[3 \ell] P$ is sufficient for all curves in [FST10] except KSS and 6.6 where $k \equiv 2,3 \bmod 6$.

Theorem (\mathbb{G}_{1} and \mathbb{G}_{2} membership testing)

Let $q^{\prime}=q$ or resp. q^{k} and $c^{\prime}=c_{1}$ or resp. c_{2}. If ψ acts as the multiplication by λ on $E\left(\mathbb{F}_{q^{\prime}}\right)[r]$ and $\operatorname{gcd}\left(\chi(\lambda), c^{\prime}\right)=1$ then

$$
\psi(Q)=[\lambda] Q \Longleftrightarrow Q \in E\left(\mathbb{F}_{q^{\prime}}\right)[r]
$$

with χ the characteristic polynomial of ψ.

Proposition (\mathbb{G}_{T} membership testing)

For $z \in \mathbb{F}_{p^{k}}^{*}$ and Φ_{k} the k-th cyclotomic polynomial, we have:

$$
z^{\Phi_{k}(p)}=1 \text { and } z^{p}=z^{t-1} \text { and } \operatorname{gcd}\left(p+1-t, \Phi_{k}(p)\right)=r \Longrightarrow z^{r}=1
$$

Overview

(8) Co-factor clearing and subgroup membership

(9) Pairings in R1CS (details)
(10) BLS24-317 vs. BLS12-381
(1) Cycles (details)

Pairings out-circuit: Miller algorithm

```
\mathbb{G}}:\quad\mathrm{ : Coordinates compressed in }\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{k/d}}{}\mathrm{ instead of }\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{k}}{
(where d is the twist degree) [BN06]
- Homogeneous projective coordinates ( }X,Y,Z)[AKL+11, ABLR14]
- Sharing computation between Double/Add and lines
evaluation [AKL+}\mp@subsup{}{}{+}11,ABLR14
Finite fields: - }\mp@subsup{\mathbb{F}}{p}{}->\cdots->\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{k/d}}{}->\cdots->\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{k}}{
- efficient representation of line (multiplying the line evaluation by a factor }
wiped out later) [ABLR14]
- efficient sparse multiplications in }\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{k}}{}[Sco19
```


Pairings out-circuit: Final exponentiation

$$
\frac{p^{k}-1}{r}=\underbrace{\frac{p^{k}-1}{\Phi_{k}(p)}}_{\text {easy part }} \cdot \underbrace{\frac{\Phi_{k}(p)}{r}}_{\text {hard part }}
$$

easy part: a polynomial in p with small coefficients (Frobenius maps)
e.g. (BLS12): $1 \mathrm{~F} 2+1$ Conj +1 Inv +1 Mul in $\mathbb{F}_{p^{12}}$
hard part: More expensive. Vectorial or lattice-based
Optimizations [HHT20, AFK ${ }^{+}$13, GF16] dominating cost: CycloSqr [GS10, Kar13] $+\operatorname{Mul}$ in $\mathbb{F}_{p^{k}}$

Pairing in-circuit

Finite fields

R1CS is about writing $o=l \cdot r$

- Over $\mathbb{F}_{p}\left(\mathbb{F}_{r}\right.$ of BW6):
- Square $=\operatorname{Mul}(o=l \cdot l)$
- Inv $=\mathrm{Mul}+1 \mathrm{C}(1 / I=0 \rightarrow 1 \stackrel{?}{=} / .0$ with o an input hint $)$
- Div $=\mathrm{Mul}+1 \mathrm{C}(r / I=0 \rightarrow r \stackrel{?}{=} I \cdot o$ with o an input hint $)$
- Inv+Mul \rightarrow Div
- Over $\mathbb{F}_{p^{e}}$:
- Square $\neq \mathrm{Mul}$ (e.g. $\mathbb{F}_{p^{2}} 2 \mathrm{C}$ vs 3 C)
- $\operatorname{Inv}=\mathrm{Mul}+\mathrm{eC}(1 / I=o \rightarrow 1 \stackrel{?}{=} I \cdot o$ with o an input hint $)$
- Div $=\mathrm{Mul}+\mathrm{eC}(r / I=o \rightarrow r \stackrel{?}{=} I \cdot o$ with o an input hint $)$
- Inv+Mul \rightarrow Div

Pairing in-circuit

Affine arithmetic

\mathbb{G}_{2} Double: $[2]\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right)$

$$
\begin{aligned}
\lambda & =3 x_{1}^{2} / 2 y_{1} \\
x_{3} & =\lambda^{2}-2 x_{1} \\
y_{3} & =\lambda\left(x_{1}-x_{3}\right)-y_{1}
\end{aligned}
$$

$$
\mathbb{G}_{2} \text { Add: }\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)
$$

$$
\begin{aligned}
\lambda & =\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right) \\
x_{3} & =\lambda^{2}-x_{1}-x_{2} \\
y_{3} & =\lambda\left(x_{2}-x_{3}\right)-y_{2}
\end{aligned}
$$

	Div (5C)	Sq (2C)	Mul (3C)	total
Double	1	2	1	12 C
Add	1	1	1	10 C

Tailored optimization: Short addition chain of the seed x with inverted Double/Add wieghts! (cf. github.com/mmcloughlin/addchain)

Pairing in-circuit

Affine arithmetic

In the Miller loop, when $b=1 \Longrightarrow[2] R+Q \rightarrow$ 22C
Instead: $[2] R+Q=(R+Q)+R \rightarrow 20 C$
Better: omit y_{R+Q} computation in $(R+Q)+R \rightarrow$ 17C [ELM03]
\mathbb{G}_{2} Double-and-Add: $[2]\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{4}, y_{4}\right)$

$$
\begin{aligned}
& \lambda_{1}=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right) \\
& x_{3}=\lambda_{1}^{2}-x_{1}-x_{2} \\
& \lambda_{2}=-\lambda_{1}-2 y_{1} /\left(x_{3}-x_{1}\right) \\
& x_{4}=\lambda_{2}^{2}-x_{1}-x_{3} \\
& y_{4}=\lambda_{2}\left(x_{1}-x_{4}\right)-y_{1}
\end{aligned}
$$

	Div (5C)	Sq (2C)	Mul (3C)	total
Double-and-Add	2	2	1	$\mathbf{1 7 C}$

Pairing in-circuit

- ℓ is $a y+b x+c=0 \in \mathbb{F}_{p^{2}}$
- $\ell_{\psi([2] R)}(P)$ and $\ell_{\psi(R+Q)}(P)$ are of the form $\left(a^{\prime} y_{P}, 0,0, b^{\prime} x_{P}, c^{\prime}, 0\right) \in \mathbb{F}_{p^{12}}$ $\left(\psi: E^{\prime}\left(\mathbb{F}_{p^{k / d}}\right) \rightarrow E\left(\mathbb{F}_{p^{k}}\right)\right)$ [ABLR14]
\rightarrow sparse multiplication (1) in $\mathbb{F}_{p^{12}}$
- precompute $1 / y_{P}(5 \mathrm{C})$ and $x_{P} / y_{P}(5 \mathrm{C})$ and $\ell(P)$ becomes $\left(1,0,0, b^{\prime} x_{P} / y_{p}, c^{\prime} / y_{p}, 0\right) \in \mathbb{F}_{p^{12}}$
\rightarrow better sparse multiplication (2) in $\mathbb{F}_{p^{12}}$

	total
Full Mul	54 C
Sparse Mul (1)	39 C
Sparse Mul (2)	30 C

Pairing in-circuit

Easy part:

$$
\begin{aligned}
& \text { t. Conjugate (m) } \\
& \text { m. Inverse (m) // 66C } \\
& \text { t.Mul(t, m) // 54C } \\
& \text { m. FrobeniusSquare (t) } \\
& \text { m. Mul(m, t) // 54C }
\end{aligned}
$$

Pairing in-circuit

Easy part:

$$
\begin{aligned}
& \text { t. Conjugate }(\mathrm{m}) \\
& <@ \text { textcolor\{blue\}\{t. } \operatorname{Div}(\mathrm{t}, \mathrm{~m}) \quad / / \mathrm{66C}\} @ \\
& \mathrm{~m} \text {. FrobeniusSquare }(\mathrm{t}) \\
& \mathrm{m} \cdot \operatorname{Mul}(\mathrm{~m}, \mathrm{t}) / / 54 \mathrm{C}
\end{aligned}
$$

Pairing in-circuit

Easy part: (more on that later)

$$
\begin{aligned}
& \text { <@ } \backslash \text { textcolor\{blue\}\{t. } \operatorname{Div}(-m[0], m[1]) / / 18 C\} @> \\
& <@ \backslash \text { textcolor }\{\text { blue }\}\{m \text {. TorusFrobeniusSquare (t) }\} \text { @ }> \\
& <\text { @ } \backslash \text { textcolor }\{\text { blue }\}\{m \text {. TorusMul (m, t) } \\
& \text { // 42C\}@> } \\
& <\text { @ } \backslash \text { textcolor }\{\text { red }\}\{r:=\text { Decompress(m) // 48C\}@> }
\end{aligned}
$$

	total
Old	174
New	120
New (Torus)	60 (or 108)

Pairing in-circuit

Final exponentiation

Hard part (Hayashida et al. [HHT20])

```
<@\textcolor{blue}{t[0]. CyclotomicSquare(m)}@>
<@\textcolor{blue}{t[1].Expt(m)}@> // mx addchain (Mul + CycloSqr)
t[2]. Conjugate(m)
<@\textcolor{blue}{t[1].Mul(t[1], t[2])}@>
<@\textcolor{blue}{t[2]. Expt(t[1])}@>
t[1].Conjugate(t[1])
<@\textcolor{blue}{t[1].Mul(t[1], t[2])}@>
<@\textcolor{blue}{t[2].Expt(t[1])}@>
t[1]. Frobenius(t[1])
<@\textcolor{blue}{t[1].Mul(t[1], t[2])}@>
<@\textcolor{blue}{m.Mul(m, t[0])}@>
<@ textcolor{blue}{t[0]. Expt(t[1])}@>
<@\textcolor{blue}{t[2].Expt(t[0])}@>
t[0]. FrobeniusSquare(t[1])
t[1]. Conjugate(t[1])
<@\textcolor{blue}{t[1].Mul(t[1], t[2])}@>
<@\textcolor{blue}{t[1].Mul(t[1], t[0])}@>
```


Pairing in-circuit

Table: Square in cyclotomic $\mathbb{F}_{p^{12}}$

	Compress	Square	Decompress
Normal	0	36	0
Granger-Scott [GS10]	0	18	0
Karabina [Kar13] SQR2345	0	12	19
Karabina [Kar13] SQR12345	0	15	8
Torus $\left(\mathbb{T}_{2}\right)[$ RS03]	24	24	48

- 1 or 2 squarings \Longrightarrow Granger-Scott
- 3 squarings \Longrightarrow Karabina SQR12345
$-\geq 4$ squarings \Longrightarrow Karabina SQR2345

Pairing in-circuit

Arithmetic in cyclotomic groups

Table: Mul in cyclotomic $\mathbb{F}_{p^{12}}$

	Compress	Multiply	Decompress
Normal	0	54	0
Torus $\left(\mathbb{T}_{2}\right)[\mathrm{RS03}]$	24	42	48

- Compression/Decompression only once!
- Whole final exp. in compressed form over $\mathbb{F}_{p^{6}}$
- Better:
- Absorb the compression in the easy part computation
- Do we really need decompression?

Pairing in-circuit

Algebraic tori

Definition

Let \mathbb{F}_{q} be a finite field and $\mathbb{F}_{q^{k}}$ a field extension of \mathbb{F}_{q}. Then the norm of an element $\alpha \in \mathbb{F}_{q^{k}}$ with respect to \mathbb{F}_{q} is defined as the product of all conjugates of α over \mathbb{F}_{q}, namely

$$
N_{\mathbb{F}_{q^{k}} / \mathbb{F}_{q}}=\alpha \alpha^{q} \cdots \alpha^{q^{k-1}}=\alpha^{\left(q^{k}-1\right) /(q-1)}
$$

$$
T_{k}\left(\mathbb{F}_{q}\right)=\bigcap_{\mathbb{F}_{q} \subset F \subset \mathbb{F}_{q^{k}}} \operatorname{ker}\left(N_{\mathbb{F}_{q^{k}} / F}\right)
$$

Lemma

Let $\alpha \in \mathbb{F}_{q^{k}}$, then $\alpha^{\left(q^{k}-1\right) / \Phi_{k}(q)} \in T_{k}\left(\mathbb{F}_{q}\right)$

Pairing in-circuit

\mathbb{T}_{2} cryptosystem introduced by Rubin and Silverberg [RS03].
Let $\alpha=c_{0}+\omega c_{1} \in \mathbb{F}_{q^{k}}-\{1,-1\}$ (cyclotomic subgroup), we have

$$
\begin{aligned}
& \text { compress } f(\alpha)=\left(1+c_{0}\right) / c_{1}=\beta \in \mathbb{F}_{q^{k / 2}} \\
& \text { decompress } f^{-1}(\beta)=(\beta+\omega) /(\beta-\omega)=\alpha \\
& \text { Mul } \beta_{1} \times \beta_{2}=\left(\beta_{1} \beta_{2}+\omega\right) /\left(\beta_{1}+\beta_{2}\right) \\
& \text { Square } \beta^{2}=\frac{1}{2}(\beta+\omega / \beta) \\
& \text { Inverse } 1 / \beta=-\beta
\end{aligned}
$$

\mathbb{T}_{2} arithmetic is R 1 CS -friendly!

Pairing in-circuit

Easy part: $m^{\left(q^{12}-1\right) / \Phi_{k}(p)}=m^{\left(p^{6}-1\right)\left(p^{2}+1\right)}$
Let $\alpha=c_{0}+\omega c_{1} \in \mathbb{F}_{q^{12}}-\{1\}$ (cyclotomic subgroup),

$$
\begin{aligned}
\alpha^{p^{6}-1} & =\left(c_{0}+\omega c_{1}\right)^{p^{6}-1} \\
& =\left(c_{0}+\omega c_{1}\right)^{p^{6}} /\left(c_{0}+\omega c_{1}\right) \\
& =\left(c_{0}-\omega c_{1}\right) /\left(c_{0}+\omega c_{1}\right) \\
& =\left(-c_{0} / c_{1}+\omega\right) /\left(-c_{0} / c_{1}-\omega\right) \\
f(\alpha) & =\left(-c_{0} / c_{1}\right)^{p^{2}+1} \\
& =\left(-c_{0} / c_{1}\right)^{p^{2}} \times\left(-c_{0} / c_{1}\right)
\end{aligned}
$$

$\rightarrow 60 \mathrm{C}$

Pairing in-circuit

Carry the whole Miller loop in compressed form (e.g. [NBS08])

- Isolate $m=1$ (just $m=\ell \rightarrow$ less constraints)
- Write m as: $f(m)=\left(-c_{0} / c_{1}\right)^{p^{2}} \times\left(-c_{0} / c_{1}\right)$
- Use \mathbb{T}_{2} cyclotomic squaring
- Write lines as

$$
\left(1,0,0, b^{\prime} x / y, c^{\prime} / y, 0\right) \in \mathbb{F}_{p^{12}} \mapsto-1 /\left(b^{\prime} x / y+\omega c^{\prime} / y\right)^{p^{2}+1}=-1 / D \in \mathbb{F}_{p^{6}}
$$

- Cyclotomic sparse Mul as:

$$
\begin{aligned}
f(m) \times f(\ell) & =(f(m) f(\ell)+\omega) /(f(m)+f(\ell)) \\
& =(-f(m)+\omega D) /(f(m) D+1)
\end{aligned}
$$

Overview

(8) Co-factor clearing and subgroup membership

(9) Pairings in R1CS (details)
(10) BLS24-317 vs. BLS12-381
(11) Cycles (details)

BLS24-317

curve	seed x	2-adicity	$r=\# \mathbb{G}_{1}$	p, \mathbb{G}_{1}	$p^{k / d}, \mathbb{G}_{2}$	$p \equiv 3$ mod 4	security
BLS12-381	0xd9018000 $(\mathrm{HW=6})$	60	255	317	1268	\checkmark	127
BLS12-381	-0xd201000000010000 $(\mathrm{HW}=6)$	32	255	381	762	\checkmark	126

Benchmark	BLS12-381 (ms/op)	BLS24-317 (ms/op)	delta
Commit	30.66	23.82	-22.31%
Open	32.79	25.87	-21.11%
Verify	1.41	3.38	$+139.46 \%$
Batch Verify (10)	1.83	3.78	$+106.79 \%$

- commitments and openings $\rightarrow 20 \%$ faster
- verification is way slower but still acceptable (3.7 ms for a batch of 10)

Overview

(8) Co-factor clearing and subgroup membership

(9) Pairings in R1CS (details)
(10) BLS24-317 vs. BLS12-381
(11) Cycles (details)

cycles: negative results

- There are no 2-cycles of elliptic curves with embedding degrees $(5,10),(8,8)$ or $(12,12)$, which means that there are no optimal (in terms of parameter sizes) pairing-friendly 2 -cycles at the 128 -bit security level.
- There are no pairing-friendly cycles with more than 2 curves with the same CM discriminant $D>3$, which implies that elliptic curves from families of varying discriminants must be used to construct cycles.
- There are no cycles of prime-order pairing-friendly curves only from the Freeman and Barreto-Naehrig families; or cycles of composite-order elliptic curves. This motivates the search for new constructions of prime-order pairing-friendly curves.

cycles: positive results

	$(6,4,6,4)$ 4-cycle			
$(6,4)$	2-cycle	E_{3}	E_{4}	
	E_{1}	E_{2}	6	4
k	6	4	$4 x^{2}+1$	$4 x^{2}-2 x+1$
$p(x)$	$4 x^{2}+1$	$4 x^{2}+2 x+1$	$4 x^{2}+1$	$4 x^{2}-2 x+1$
$r(x)$	$4 x^{2}+2 x+1$	$4 x^{2}+1$		
$t(x)$	$-2 x+1$	$2 x+1$	$2 x+1$	$-2 x+1$

Table: Parameterized $(6,4) 2$-cycles and $(6,4,6,4) 4$-cycles of MNT curves, where 4 -cycles are constructed as the union of the 2 -cycles.

cycles: open problems

- Are there cycles of elliptic curves with the same embedding degree, and possibly the same discriminant?
- Are there pairing-friendly cycles of embedding degrees greater than 6 ?
- Are there pairing-friendly cycles combining MNT, Freeman and Barreto-Naehrig curves?

