
The arithmetic of pairing-based proof systems

Youssef El Housni

PhD defense — Palaiseau, November 18, 2022

1/64

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

2/64

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

3/64

The story of Alice and Bob

(Courtesy of CBINSIGHTS)

4/64

https://www.cbinsights.com/research/what-is-blockchain-technology/

The story of Alice and Bob

Courtesy of CBINSIGHTS

5/64

https://www.cbinsights.com/research/what-is-blockchain-technology/

Blockchains

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

?

Paying −−−−−→
Problem

cost −−−−−→
Solution

?

6/64

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

7/64

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

8/64

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

8/64

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

8/64

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

8/64

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

9/64

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

9/64

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

9/64

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

9/64

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

9/64

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c = H(A, y)
s = n + c · x

π = (A, c, s)
g s ?

= A · y c

c
?
= H(A, y)

10/64

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

g︸︷︷︸
Setup

; A = gn

c = H(A, y)
s = n + c · x︸ ︷︷ ︸

Prove

π = (A, c, s)︸ ︷︷ ︸
proof

g s ?
= A · y c

c
?
= H(A, y)︸ ︷︷ ︸

Verify

11/64

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives

12/64

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives

12/64

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives

12/64

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives
12/64

Blockchains and ZKP

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

ZKP

setup, prover?, verifier?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

ZKP

Communication complexity

Paying −−−−−→
Problem

cost −−−−−→
Solution

ZKP

Verifier complexity , prover?

13/64

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [K92]

Succinct Non-Interactive ZKP [M94]

Pairing-based succinct NIZK [Groth10]

“SNARK” terminology and characterization of existence [BCCT11]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Groth16]

SNARK with universal and updatable setup [GKMMM18, BKMM19 (Sonic), GWC19
(PlonK), CHMMVW19 (Marlin),...]

14/64

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [K92]

Succinct Non-Interactive ZKP [M94]

Pairing-based succinct NIZK [Groth10]

“SNARK” terminology and characterization of existence [BCCT11]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Groth16]

SNARK with universal and updatable setup [GKMMM18, BKMM19 (Sonic), GWC19
(PlonK), CHMMVW19 (Marlin),...]

14/64

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [K92]

Succinct Non-Interactive ZKP [M94]

Pairing-based succinct NIZK [Groth10]

“SNARK” terminology and characterization of existence [BCCT11]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Groth16]

SNARK with universal and updatable setup [GKMMM18, BKMM19 (Sonic), GWC19
(PlonK), CHMMVW19 (Marlin),...]

14/64

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [K92]

Succinct Non-Interactive ZKP [M94]

Pairing-based succinct NIZK [Groth10]

“SNARK” terminology and characterization of existence [BCCT11]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Groth16]

SNARK with universal and updatable setup [GKMMM18, BKMM19 (Sonic), GWC19
(PlonK), CHMMVW19 (Marlin),...]

14/64

What is a zero-knowledge proof?

”I have a sound, complete and zero-knowledge proof that a statement is true”. [GMR85]

Sound

False statement =⇒ cheating prover cannot convince honest verifier.

Complete

True statement =⇒ honest prover convinces honest verifier.

Zero-knowledge

True statement =⇒ verifier learns nothing other than statement is true.

15/64

zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof
that a statement is true and that I know a related secret”.

Succinct

A proof is very “short” and “easy” to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification (except the
proof message).

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

16/64

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

17/64

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

17/64

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

17/64

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

17/64

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

17/64

(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , τ , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

TTP (secret trapdoor τ)
(pk, vk)← S(F , τ , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

18/64

(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , τ , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

MPC (secret trapdoor τ)
(pk, vk)← S(F , τ , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

19/64

zk-SNARK

Succinctness: A proof is very ”short” and ”easy” to verify.

Definition [BCTV14b]

A succinct proof π has size Oλ(1) and can be verified in time Oλ(|F |+ |x |+ |z |), where Oλ(.)
is some polynomial in the security parameter λ.

20/64

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

21/64

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

21/64

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

21/64

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

21/64

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

21/64

Arithmetization

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

x3 + x + 5 = 35 (x = 3)

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x + 5

22/64

Arithmetization

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

x3 + x + 5 = 35 (x = 3)

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x + 5

22/64

Arithmetization
e.g. R1CS

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

L =


0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
5 0 0 0 0 1



R =


0 1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



O =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0



witness:

~w =
(
one x d a b c

)
=
(
1 3 35 9 27 30

)

O • ~w = L • ~w · R • ~w

23/64

Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X)R(X)− O(X) = H(X)T (X) (QAP ∈ F[X])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)

24/64

Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X)R(X)− O(X) = H(X)T (X) (QAP ∈ F[X])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)

24/64

Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X)R(X)− O(X) = H(X)T (X) (QAP ∈ F[X])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)

24/64

Succinct evaluation of polynomials

Instead of verifying the QAP on the whole domain F→ verify it in a single random point τ ∈ F.

Schwartz–Zippel lemma

Any two distinct polynomials of degree d over a field F can agree on at most a d/|F| fraction
of the points in F.

25/64

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

26/64

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

26/64

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

26/64

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

26/64

Blind evaluation of polynomials

L(τ) = l0 + l1τ + l2τ
2 + · · ·+ ldτ

d ∈ F
C (L(τ)) = l0C (1) + l1C (τ) + l2C (τ2) + · · ·+ ldC (τd)

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

27/64

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

28/64

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

28/64

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

28/64

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

28/64

Blind evaluation of QAP

Blind evaluation can be achieved with black-box pairings:

e(C (H(τ)),C (T (τ)) · e(C (O(τ)),C (1)) = e(C (L(τ)),C (R(τ)))

e(H(τ)G ,T (τ)G) · e(O(τ)G ,G) = e(L(τ)G ,R(τ)G)

e(G ,G)H(τ)T (τ) · e(G ,G)O(τ) = e(G ,G)L(τ)R(τ)

ZH(τ)T (τ)+O(τ) = ZL(τ)R(τ)

29/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Outline of contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

30/64

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

31/64

Instantiation

DL:

E : y 2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.

r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

Pairing-friendly:

small embedding degree k (smallest integer k ∈ N∗ s.t. r | qk − 1).

G1 ⊂ E (Fq) and G2 ⊂ E (Fqk) two groups of order r .

GT ⊂ F∗
qk

group of r -th roots of unity.

(G1,+) = 〈G1〉, (G2,+) = 〈G2〉 and (GT ,×).

pairing e : G1 ×G2 → GT .

SNARK-friendly:

r − 1 ≡ 0 mod 2L for some large L ∈ N∗ (Fr FFT-friendly)

32/64

Instantiation

DL:

E : y 2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.

r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

Pairing-friendly:

small embedding degree k (smallest integer k ∈ N∗ s.t. r | qk − 1).

G1 ⊂ E (Fq) and G2 ⊂ E (Fqk) two groups of order r .

GT ⊂ F∗
qk

group of r -th roots of unity.

(G1,+) = 〈G1〉, (G2,+) = 〈G2〉 and (GT ,×).

pairing e : G1 ×G2 → GT .

SNARK-friendly:

r − 1 ≡ 0 mod 2L for some large L ∈ N∗ (Fr FFT-friendly)

32/64

Instantiation

DL:

E : y 2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.

r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

Pairing-friendly:

small embedding degree k (smallest integer k ∈ N∗ s.t. r | qk − 1).

G1 ⊂ E (Fq) and G2 ⊂ E (Fqk) two groups of order r .

GT ⊂ F∗
qk

group of r -th roots of unity.

(G1,+) = 〈G1〉, (G2,+) = 〈G2〉 and (GT ,×).

pairing e : G1 ×G2 → GT .

SNARK-friendly:

r − 1 ≡ 0 mod 2L for some large L ∈ N∗ (Fr FFT-friendly)

32/64

Instantiation

DL:

E : y 2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.

r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

Pairing-friendly:

small embedding degree k (smallest integer k ∈ N∗ s.t. r | qk − 1).

G1 ⊂ E (Fq) and G2 ⊂ E (Fqk) two groups of order r .

GT ⊂ F∗
qk

group of r -th roots of unity.

pairing e : G1 ×G2 → GT .

SNARK-friendly:

r − 1 ≡ 0 mod 2L for some large L ∈ N∗ (Fr FFT-friendly)

BLS12-381: q-bit=381, r -bit=255, k = 12, L = 32

33/64

SNARK-friendly curves from the literature

[D. F. Aranha, Y.EH, A. Guillevic - DCC 2022]

Curve seed x L
r = #G1

(bits)
p, G1

(bits)
pk/d , G2

(bits)

p ≡ 3
mod 4

security (bits)
G1 F∗

pk

BN-256
[PHGR13]

18680333

HW2-NAF(6x + 2) = 19
5 256 256 512 X 128 103

BN-254
[BFR+13]

262 − 254 + 244

HW2-NAF(6x + 2) = 7
45 254 254 508 × 127 102

GMV6-183
[BCG+13]

0x8eed757d90615e40000000

HW(−26x − 2) = 16
31 181 183 549 NA 90 71

BN-254
[BCTV14b]

0x44e992b44a6909f1

HW2-NAF(6x + 2) = 22
28 254 254 508 X 127 103

BLS12-381
[Bow17]

-0xd201000000010000

HW(x) = 6
32 255 381 762 X 127 126

34/64

Families of SNARK-friendly curves [D. F. Aranha, Y.EH, A. Guillevic - DCC 2022]

Family,
r , p ∈ N, t ∈ Z r ≡ 1 mod 2L

p ≡ 3
mod 4

G2

coord. in

BN x ≡ 2570880382155688433 mod 263 ⇒ 264 | r − 1 X Fp2

any x x ≡ 0 mod 2L−1 ⇒ 2L | r − 1, 2L | p − 1 7

BLS12 x ≡ 1 mod 3 · 2L−1 ⇒ 2L | r − 1, 2L−1 | p − 1 7

x ≡ 1 x ≡ 2L−1 − 1 mod 3 · 2L−1 ⇒ 2L | r − 1, 6 | p − 1 X Fp2

mod 3 x ≡ 2L/2 mod 3 · 2L/2 ⇒ 2L | r − 1, 6 | p − 1 X
BLS24 x ≡ 1 mod 3 · 2L−2 ⇒ 2L | r − 1, 2L−2 | p − 1 7

x ≡ 1 x ≡ 2L−1 − 1 mod 3 · 2L−2 ⇒ 2L | r − 1, 6 | p − 1 3 Fp4

mod 3 x ≡ 2L/4 mod 3 · 2L/4 ⇒ 2L | r − 1, 6 | p − 1 3

MNT4, t = x + 1 x ≡ 0 mod 2L/2 ⇒ 2L | r − 1, 2L/2 | p − 1 7 Fp2

MNT6 x ≡ 0 mod 2L−1 ⇒ 2L | r − 1, 22L | p − 1 7 Fp3

GMV6(h = 4)
any x

x ≡ 0 mod 2L−1 ⇒ 2L | r − 1, 2L−1 | p − 1 NA Fp3

KSS16
(x ≡ ±25 mod 70)

±14398186520986421885,±37456616613123361405
mod 35 · 262 ⇒ 264 | r − 1, p ≡ 1 mod 4

7 Fp4

KSS18
(x ≡ 14 mod 42)

x = 14 · 2L/3 mod 42 · 2L/3 ⇒ 2L | r − 1, 12 | p − 1 NA Fp3

35/64

New SNARK-friendly curves

[D. F. Aranha, Y.EH, A. Guillevic - DCC 2022]

Curve x L
r = #G1

(bits)
p, G1

(bits)
pk/d , G2

(bits)

p ≡ 3
mod 4

security (bits)
G1 F∗

pk

BN383
0x49e69d16fdc80216226909f1

HW2-NAF(6x + 2) = 30
44 383 383 766 X 191 123

BLS24-317
0xd9018000

HW2-NAF(x) = 6
60 255 317 1268 X 127 160

KSS16-329
0x38fab7583

HW(x) = 12
19 255 329 1316 X 127 140

KSS18-345
0xc0c44000000

HW(x) = 6
78 254 345 690 NA 127 150

https://github.com/yelhousni/gnark-crypto

36/64

https://github.com/yelhousni/gnark-crypto

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

37/64

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

38/64

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

38/64

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

38/64

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

38/64

Proof composition: why?

Aggregation:

proof π

proof π1 proof π2 · · · proof πn

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V

39/64

Proof composition: why?

Decentralized private computation (DPC):

proof π proof π′

proof π1 proof π2

vk = vk ′

vk1 6= vk2

40/64

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20]

41/64

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20]

41/64

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20]

41/64

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20]

41/64

2-cycles and 2-chains

A 2-cycle of elliptic curves:

E1(Fq)

E0(Fp)

#E0(Fp) = q#E1(Fq) = p

A 2-chain of elliptic curves:

E1(Fq)

E0(Fp)

#E1(Fq) = h · p

42/64

2-chains of elliptic curves

inner curve:
curve E0(Fp)

of prime order r0

outer curve:
curve E1(Fq)
of order h × p

Given p, search for a pairing-friendly curve
E1 of order h · p over a field Fq

SNARK-0 with
a pairing e :

G1 ×G2 → GT

#Gi = r0

computation
in Fp[X]

SNARK-1 with
a pairing e :

G′1 ×G′2 → G′T
#G′i = p

pairing statement proof of statement

43/64

SNARK-friendly curves, 2-cycles and 2-chains

SNARK
E/Fq BN, BLS12, BW12?, KSS16? . . . [FST10]

pairing-friendly
2L | r − 1

Recursive SNARK (2-cycle)
E0/Fp and E1/Fq MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

both pairing-friendly
#E1(Fq) = p and #E0(Fp) = q
2L | p − 1
2L | q − 1

Recursive SNARK (2-chain)
E0/Fp BLS12 (x ≡ 1 mod 3 · 2L) [BCG+20], ?

pairing-friendly
2L | r0 − 1 (r0 | #E0(Fp))
2L | p − 1

E1/Fq Cocks–Pinch algorithm [ZEXE]

pairing-friendly
p | #E1(Fq)

44/64

2-chains: outer curve E1/Fq

q is a prime or a prime power

t is relatively prime to q

r is prime

r | qk − 1

r | q + 1− t

4q − t2 = Dy 2 (for D < 1012) and some integer y

r is a fixed chosen prime
s.t. r | q + 1− t
and r | qk − 1

Algorithm: Cocks–Pinch method

Fix k and D and choose a prime r s.t. k |r − 1 and (−Dr) = 1;

Compute t = 1 + x (r−1)/k for x a generator of (Z/rZ)×;

Compute y = (t − 2)/
√
−D mod r ;

Lift t and y in Z;
Compute q = (t2 + Dy 2)/4 (in Q);

45/64

2-chains: outer curve E1/Fq

q is a prime or a prime power

t is relatively prime to q

r is prime

r | qk − 1

r | q + 1− t

4q − t2 = Dy 2 (for D < 1012) and some integer y

r is a fixed chosen prime
s.t. r | q + 1− t
and r | qk − 1

Algorithm: Cocks–Pinch method

Fix k and D and choose a prime r s.t. k |r − 1 and (−Dr) = 1;

Compute t = 1 + x (r−1)/k for x a generator of (Z/rZ)×;

Compute y = (t − 2)/
√
−D mod r ;

Lift t and y in Z;
Compute q = (t2 + Dy 2)/4 (in Q);

45/64

2-chains: outer curve E1/Fq

ρ = log2 q/ log2 r ≈ 2 (because q = f (t2, y 2) and t, y
$←− modr).

The curve parameters (q, r , t) are not expressed as polynomials.

Algorithm: Brezing–Weng method

Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive leading
coefficient s.t.

√
−D and the primitive k-th root of unity ζk are in K = Q[x]/r(x);

Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K ;
Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D in K ;

Compute q(x) = (t2(x) + Dy 2(x))/4 in Q[x];

ρ = 2 max (deg t(x), deg y(x))/ deg r(x) < 2

r(x), q(x), t(x) but is q(x) irreducible for r(x) = p(x) ?

46/64

2-chains: outer curve E1/Fq

ρ = log2 q/ log2 r ≈ 2 (because q = f (t2, y 2) and t, y
$←− modr).

The curve parameters (q, r , t) are not expressed as polynomials.

Algorithm: Brezing–Weng method

Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive leading
coefficient s.t.

√
−D and the primitive k-th root of unity ζk are in K = Q[x]/r(x);

Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K ;
Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D in K ;

Compute q(x) = (t2(x) + Dy 2(x))/4 in Q[x];

ρ = 2 max (deg t(x), deg y(x))/ deg r(x) < 2

r(x), q(x), t(x) but is q(x) irreducible for r(x) = p(x) ?

46/64

2-chains: outer curve E1/Fq

ρ = log2 q/ log2 r ≈ 2 (because q = f (t2, y 2) and t, y
$←− modr).

The curve parameters (q, r , t) are not expressed as polynomials.

Algorithm: Brezing–Weng method

Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive leading
coefficient s.t.

√
−D and the primitive k-th root of unity ζk are in K = Q[x]/r(x);

Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K ;
Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D in K ;

Compute q(x) = (t2(x) + Dy 2(x))/4 in Q[x];

ρ = 2 max (deg t(x), deg y(x))/ deg r(x) < 2

r(x), q(x), t(x) but is q(x) irreducible for r(x) = p(x) ?

46/64

2-chains: outer curve E1/Fq

[Y.EH, A. Guillevic - CANS 2020]

1 Cocks–Pinch method

k = 6 and −D = −3 =⇒ 128-bit security, G2 coordinates in Fq (pairing over Fq instead if
Fq3), GLV multiplication over G1 and G2

restrict search to size(q) ≤ 768 bits =⇒ smallest machine-word size

2 Brezing–Weng method

choose r(x) = qBLS12(x)
q(x) = (t2(x) + 3y 2(x))/4 factors =⇒ q(x0) cannot be prime
lift in Z t = r × ht + t(x0) and y = r × hy + y(x0) [FK19, GMT20]

47/64

2-chains: outer curve E1/Fq

[Y.EH, A. Guillevic - CANS 2020]

1 Cocks–Pinch method

k = 6 and −D = −3 =⇒ 128-bit security, G2 coordinates in Fq (pairing over Fq instead if
Fq3), GLV multiplication over G1 and G2

restrict search to size(q) ≤ 768 bits =⇒ smallest machine-word size

2 Brezing–Weng method

choose r(x) = qBLS12(x)
q(x) = (t2(x) + 3y 2(x))/4 factors =⇒ q(x0) cannot be prime
lift in Z t = r × ht + t(x0) and y = r × hy + y(x0) [FK19, GMT20]

47/64

2-chains: outer curve E1/Fq

[Y.EH, A. Guillevic - CANS 2020]

E : y 2 = x3 − 1 over Fq of 761-bit with seed x0 = 0x8508c00000000 and polynomials:

Our curve, k = 6, D = 3, r = qBLS12

r(x) = (x6 − 2x5 + 2x3 + x + 1)/3 = qBLS12−377(x)
t(x) = x5 − 3x4 + 3x3 − x + 3 + htr(x)
y(x) = (x5 − 3x4 + 3x3 − x + 3)/3 + hy r(x)
q(x) = (t2 + 3y 2)/4
qht=13,hy=9(x) = (103x12 − 379x11 + 250x10 + 691x9 − 911x8

−79x7 + 623x6 − 640x5 + 274x4 + 763x3 + 73x2 + 254x + 229)/9

48/64

SNARK-0: inner curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

128-bit security

pairing-friendly

efficient G1, G2, GT and pairing

p − 1 ≡ r − 1 ≡ 0 mod 2L for large input
L ∈ N∗ (FFTs)

→ BLS (k = 12) family of ≈ 384 bits with
seed x ≡ 1 mod 3 · 2L

Universal SNARK

128-bit security

pairing-friendly

efficient G1,/////G2,/////GT and pairing

p − 1 ≡ r − 1 ≡ 0 mod 2L for large
L ∈ N∗ (FFTs)

→ BLS (k = 24) family of ≈ 320 bits with
seed x ≡ 1 mod 3 · 2L

49/64

SNARK-0: inner curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

128-bit security

pairing-friendly

efficient G1, G2, GT and pairing

p − 1 ≡ r − 1 ≡ 0 mod 2L for large input
L ∈ N∗ (FFTs)

→ BLS (k = 12) family of ≈ 384 bits with
seed x ≡ 1 mod 3 · 2L

Universal SNARK

128-bit security

pairing-friendly

efficient G1,/////G2,/////GT and pairing

p − 1 ≡ r − 1 ≡ 0 mod 2L for large
L ∈ N∗ (FFTs)

→ BLS (k = 24) family of ≈ 320 bits with
seed x ≡ 1 mod 3 · 2L

49/64

SNARK-1: outer curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

128-bit security

pairing-friendly

efficient G1, G2, GT and pairing

r = p (r − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of ≈ 768 bits with (t
mod x) mod r ≡ 0 or 3

Universal SNARK

128-bit security

pairing-friendly

efficient G1,/////G2,/////GT and pairing

r = p (r − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of ≈ 704 bits with (t
mod x) mod r ≡ 0 or 3
→ CP (k = 8) family of ≈ 640 bits
→ CP (k = 12) family of ≈ 640 bits

All Gi formulae and pairings are given in terms of x and some ht , hy ∈ N.

50/64

SNARK-1: outer curves

[Y.EH, A. Guillevic - EuroCrypt 2022]

Groth16 SNARK

128-bit security

pairing-friendly

efficient G1, G2, GT and pairing

r = p (r − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of ≈ 768 bits with (t
mod x) mod r ≡ 0 or 3

Universal SNARK

128-bit security

pairing-friendly

efficient G1,/////G2,/////GT and pairing

r = p (r − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of ≈ 704 bits with (t
mod x) mod r ≡ 0 or 3
→ CP (k = 8) family of ≈ 640 bits
→ CP (k = 12) family of ≈ 640 bits

All Gi formulae and pairings are given in terms of x and some ht , hy ∈ N.
50/64

Implementation and benchmark

[Y.EH, A. Guillevic - EuroCrypt 2022]

Short list of 2-chains with some additional nice engineering properties:

Groth16: BLS12-377 and BW6-761
Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Groth16 (ms)

S P V

BLS12-377 387 34 1
BLS24-315 501 54 4

BW6-761 1226 114 9
BW6-633 710 69 6
BW6-672 840 74 7

Table: Universal (ms)

S P V

BLS12-377 87 215 4
BLS24-315 76 173 1

BW6-761 294 634 9
BW6-633 170 428 6
BW6-672 190 459 7

(on aAMD EPYC 7R32 AWS (c5a.24xlarge) machine)

https://github.com/ConsenSys/gnark-crypto
51/64

https://github.com/ConsenSys/gnark-crypto

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

52/64

Cost of pairing-based SNARKs

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication gates,
a =number of addition gates and ` =number of public inputs. MG =multiplication in G and P=pairing.

Setup Prove Verify

Groth16 3n MG1 , n MG2 (4n − `) MG1 , n MG2 3 P, ` MG1

Universal
(PLONK-KZG)

d≥n+a MG1 , 1 MG2 9(n + a) MG1 2 P, 18 MG1

FV : program that checks V (eq. 1) (` = 1, n = 90000)

53/64

Cost of pairing-based SNARKs

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication gates,
a =number of addition gates and ` =number of public inputs. MG =multiplication in G and P=pairing.

Setup Prove Verify

Groth16 3n MG1 , n MG2 (4n − `) MG1 , n MG2 3 P, ` MG1

Universal
(PLONK-KZG)

d≥n+a MG1 , 1 MG2 9(n + a) MG1 2 P, 18 MG1

FV : program that checks V (eq. 1) (` = 1, n = 90000)

53/64

Pairings out-circuit

ate pairing

e : G1 ×G2 → GT

(P,Q) 7→ ft−1,Q(P)(qk−1)/r

ft−1,Q(P) is the Miller function

f 7→ f (qk−1)/r is the final exponentiation

Examples: For polynomial families in the seed x ,

BLS12 e(P,Q) = fx ,Q(P)(q12−1)/r

BLS24 e(P,Q) = fx ,Q(P)(q24−1)/r

[BN06, AKL+11, ABLR14, ABLR14, Sco19] [HHT20, AFK+13, GF16, GS10, Kar13]

54/64

Pairings out-circuit: Miller algorithm

Algorithm: MillerLoop(s,P,Q)

Output: m = fs,Q(P)
m← 1; R ← Q
for b from the second most significant bit of s to the least do

`← `R,R(P); R ← [2]R; v ← v[2]R(P) Doubling Step

m← m2 · `/v
if b = 1 then

`← `R,Q(P); R ← R + Q; v ← vR+Q(P) Addition Step
m← m · `/v

return m

55/64

Pairings out-circuit: Miller algorithm

Algorithm: MillerLoop(s,P,Q)

Output: m = fs,Q(P)
m← 1; R ← Q
for b from the second most significant bit of s to the least do

`← `R,R(P); R ← [2]R; Doubling Step
m← m2 · `
if b = 1 then

`← `R,Q(P); R ← R + Q; Addition Step
m← m · `

return m

55/64

Pairings out-circuit: Miller algorithm

Algorithm: MillerLoop(s,P,Q)

Output: m = fs,Q(P)
m← 1; R ← Q
for b from the second most significant bit of s to the least do

`← `R,R(P); R ← [2]R; Doubling Step
m← m2 · `
if b = 1 then

`← `R,Q(P); R ← R + Q; Addition Step
m← m · `

return m

55/64

Pairings in-circuit (R1CS)

[Y.EH - ACNS 2023]

Time Constraints

BLS12-377 < 1 ms ≈ 80 000

Inverses, in R1CS, cost (almost) as much as multiplications !
Miller loop:

Affine coordinates →≈ 19k (arkworks)
Division in extension fields
Double-and-Add in affine
lines evaluations (1/y, x/y)
Loop with short addition chains
Torus-based arithmetic

Final Exponentiation:
Karatsuba cyclotomic squarings
Torus-based arithmetic
Exp. with short addition chains

19k →≈ 11k (gnark)

56/64

Pairings in-circuit (R1CS)

[Y.EH - ACNS 2023]

e.g. For BLS12-377,

https://github.com/ConsenSys/gnark

Constraints

Pairing 11535
Groth16 verifier 19378

BLS sig. verifier 14888

KZG verifier 20679

For BLS24-315, a pairing is 27608 contraints .
More optimizations in mind:

Quadruple-and-Add Miller loop [CBGW10]

Fixed argument Miller loop (KZG, BLS sig) [CS10]

Longa’s sums of products Mul [Lon22]
57/64

https://github.com/ConsenSys/gnark

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

58/64

Multi-Scalar-Multiplication (MSM)

[Y.EH and G. Botrel - In submission]

a1P1 + a2P2 + · · ·+ anPn with Pi ∈ G1 (or G2) and ai ∈ Fr (|r | =b−bit)

Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed c ≤ b

Step 2: solve each c-bit MSM efficiently

Step 3: combine the c-bit MSMs into the final b-bit MSM

→ Overall cost is: b/c(n + 2c−1) + (b − c − b/c − 1)

Mixed re-additions: to accumulate Pi in the c-bit MSM buckets with cost
b/c(n − 2c−1 + 1)

Additions: to combine the bucket sums with cost b/c(2c − 3)

Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost
b − c + b/c − 1

b/c − 1 additions and
b − c doublings

59/64

Multi-Scalar-Multiplication (MSM)

[Y.EH and G. Botrel - In submission]

a1P1 + a2P2 + · · ·+ anPn with Pi ∈ G1 (or G2) and ai ∈ Fr (|r | =b−bit)

Step 1: reduce the b-bit MSM to several c-bit MSMs for some chosen fixed c ≤ b

Step 2: solve each c-bit MSM efficiently

Step 3: combine the c-bit MSMs into the final b-bit MSM

→ Overall cost is: b/c(n + 2c−1) + (b − c − b/c − 1)

Mixed re-additions: to accumulate Pi in the c-bit MSM buckets with cost
b/c(n − 2c−1 + 1)

Additions: to combine the bucket sums with cost b/c(2c − 3)

Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost
b − c + b/c − 1

b/c − 1 additions and
b − c doublings

59/64

Our MSM code vs. the ZPrize baseline (BLS12-377 G1)

[Y.EH and G. Botrel - In submission]

All inner curves have a twisted Edwards form −y 2 + x2 = 1 + dx2y 2

We use a custom coordinates system (y − x : y + x : 2dxy)→ (7m per addition)

2-NAF buckets, Parallelism, software optimizations...

500 1,000 1,500 2,000 2,500

1.0

2.0

·105

Timing (ms)

S
iz

e
o

f
M

S
M

Our code (tEd-custom)

Our code (SW-extJac)

Baseline (SW-Jac)

Samsung Galaxy A13 5G (Model SM-A136ULGDXAA with SoC MediaTek Dimensity 700 (MT6833)) 60/64

Overview

1 Motivation

2 zk-SNARK

3 SNARK-friendly curves

4 SNARK-friendly 2-chains

5 Pairings in R1CS

6 Multi-scalar multiplication

7 Conclusion

61/64

Industrial Impact

62/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Summary

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [(in submission), zprize winner]

63/64

Perspectives

Is it possible to find a silver bullet construction of elliptic curves that can address all the
efficiency/security requirements?

Are there more efficient cycles of pairing-friendly curves? How to generate them?

Can we get rid of the FFT-friendliness?

Field-agnostic SNARKs [Brakedown, Orion, Nova, Hyperplonk]
FFT over non-smooth fields [ECFFT]

64/64

Perspectives

Is it possible to find a silver bullet construction of elliptic curves that can address all the
efficiency/security requirements?

Are there more efficient cycles of pairing-friendly curves? How to generate them?

Can we get rid of the FFT-friendliness?

Field-agnostic SNARKs [Brakedown, Orion, Nova, Hyperplonk]
FFT over non-smooth fields [ECFFT]

64/64

References I

Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jefferson E. Ricardini.
The realm of the pairings.
In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of
LNCS, pages 3–25. Springer, Heidelberg, August 2014.

Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and
Francisco Rodŕıguez-Henŕıquez.
Implementing pairings at the 192-bit security level.
In Michel Abdalla and Tanja Lange, editors, PAIRING 2012, volume 7708 of LNCS, pages
177–195. Springer, Heidelberg, May 2013.

1/37

References II

Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio Cesar
López-Hernández.
Faster explicit formulas for computing pairings over ordinary curves.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 48–68.
Springer, Heidelberg, May 2011.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90–108. Springer, Heidelberg, August 2013.

2/37

References III

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard
Wu.
Zexe: Enabling decentralized private computation.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos,
CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 276–294. Springer, Heidelberg, August 2014.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von neumann architecture.
In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796. USENIX
Association, August 2014.

3/37

References IV

Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg,
and Michael Walfish.
Verifying computations with state.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 341–357, New York, NY, USA, 2013. Association for Computing
Machinery.
ePrint with major differences at ePrint 2013/356.

Paulo S. L. M. Barreto and Michael Naehrig.
Pairing-friendly elliptic curves of prime order.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages
319–331. Springer, Heidelberg, August 2006.

4/37

https://eprint.iacr.org/2013/356

References V

Sean Bowe.
BLS12-381: New zk-SNARK elliptic curve construction.
Zcash blog, March 11 2017.
https://blog.z.cash/new-snark-curve/.

Craig Costello, Colin Boyd, Juan Manuel González Nieto, and Kenneth Koon-Ho Wong.
Avoiding full extension field arithmetic in pairing computations.
In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10, volume 6055 of
LNCS, pages 203–224. Springer, Heidelberg, May 2010.

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

5/37

https://blog.z.cash/new-snark-curve/

References VI

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur.
Geppetto: Versatile verifiable computation.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 253–270. IEEE Computer Society, 2015.
ePrint 2014/976.

Craig Costello and Douglas Stebila.
Fixed argument pairings.
In Michel Abdalla and Paulo S. L. M. Barreto, editors, LATINCRYPT 2010, volume 6212
of LNCS, pages 92–108. Springer, Heidelberg, August 2010.

6/37

https://eprint.iacr.org/2014/976

References VII

Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery.
Fast elliptic curve arithmetic and improved Weil pairing evaluation.
In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 343–354. Springer,
Heidelberg, April 2003.

Georgios Fotiadis and Elisavet Konstantinou.
TNFS resistant families of pairing-friendly elliptic curves.
Theoretical Computer Science, 800:73–89, 31 December 2019.

David Freeman, Michael Scott, and Edlyn Teske.
A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224–280, April 2010.

7/37

References VIII

Loubna Ghammam and Emmanuel Fouotsa.
On the computation of the optimal ate pairing at the 192-bit security level.
Cryptology ePrint Archive, Report 2016/130, 2016.
https://eprint.iacr.org/2016/130.

Aurore Guillevic, Simon Masson, and Emmanuel Thomé.
Cocks–Pinch curves of embedding degrees five to eight and optimal ate pairing
computation.
Des. Codes Cryptogr., 88:1047–1081, March 2020.

Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

8/37

https://eprint.iacr.org/2016/130

References IX

Robert Granger and Michael Scott.
Faster squaring in the cyclotomic subgroup of sixth degree extensions.
In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS,
pages 209–223. Springer, Heidelberg, May 2010.

Daiki Hayashida, Kenichiro Hayasaka, and Tadanori Teruya.
Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic
curves.
Cryptology ePrint Archive, Report 2020/875, 2020.
https://eprint.iacr.org/2020/875.

Koray Karabina.
Squaring in cyclotomic subgroups.
Math. Comput., 82(281):555–579, 2013.

9/37

https://eprint.iacr.org/2020/875

References X

Patrick Longa.
Efficient algorithms for large prime characteristic fields and their application to bilinear
pairings and supersingular isogeny-based protocols.
Cryptology ePrint Archive, Report 2022/367, 2022.
https://eprint.iacr.org/2022/367.

Michael Naehrig, Paulo S. L. M. Barreto, and Peter Schwabe.
On compressible pairings and their computation.
In Serge Vaudenay, editor, AFRICACRYPT 08, volume 5023 of LNCS, pages 371–388.
Springer, Heidelberg, June 2008.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation.
In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer
Society Press, May 2013.

10/37

https://eprint.iacr.org/2022/367

References XI

Karl Rubin and Alice Silverberg.
Torus-based cryptography.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 349–365. Springer,
Heidelberg, August 2003.

Michael Scott.
Pairing implementation revisited.
Cryptology ePrint Archive, Report 2019/077, 2019.
https://eprint.iacr.org/2019/077.

11/37

https://eprint.iacr.org/2019/077

Overview

8 Co-factor clearing and subgroup membership

9 Pairings in R1CS (details)

10 BLS24-317 vs. BLS12-381

11 Cycles (details)

12/37

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

e : G1 ×G2 → GT

Pairing groups: G1,G2 and GT are sub-groups of some prime order r .

They are defined over some larger groups of composite orders c1,2,T︸ ︷︷ ︸
co-factors

× r

Let P be a random element of order c1 × r

Co-factor clearing: P ′ ∈ G1 ← [c1]P

Let Q be a random element of order c1,2,T × r

Subgroup membership testing: [r]Q
?
= O

13/37

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

e : G1 ×G2 → GT

Pairing groups: G1,G2 and GT are sub-groups of some prime order r .

They are defined over some larger groups of composite orders c1,2,T︸ ︷︷ ︸
co-factors

× r

Let P be a random element of order c1 × r

Co-factor clearing: P ′ ∈ G1 ← [c1]P

Let Q be a random element of order c1,2,T × r

Subgroup membership testing: [r]Q
?
= O

13/37

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

e : G1 ×G2 → GT

Pairing groups: G1,G2 and GT are sub-groups of some prime order r .

They are defined over some larger groups of composite orders c1,2,T︸ ︷︷ ︸
co-factors

× r

Let P be a random element of order c1 × r

Co-factor clearing: P ′ ∈ G1 ← [c1]P

Let Q be a random element of order c1,2,T × r

Subgroup membership testing: [r]Q
?
= O

13/37

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

Proposition (G1 co-factor clearing)

Many curve families have the G1 cofactor of the form c1 = 3`2. To clear this cofactor, the map P 7→ [3`]P is
sufficient for all curves in [FST10] except KSS and 6.6 where k ≡ 2, 3 mod 6.

Theorem (G1 and G2 membership testing)

Let q′ = q or resp. qk and c ′ = c1 or resp. c2. If ψ acts as the multiplication by λ on E(Fq′)[r] and
gcd(χ(λ), c ′) = 1 then

ψ(Q) = [λ]Q ⇐⇒ Q ∈ E(Fq′)[r]

with χ the characteristic polynomial of ψ.

Proposition (GT membership testing)

For z ∈ F∗pk and Φk the k-th cyclotomic polynomial, we have:

zΦk (p) = 1 and zp = z t−1 and gcd(p + 1− t,Φk(p)) = r =⇒ z r = 1 .

14/37

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

Proposition (G1 co-factor clearing)

Many curve families have the G1 cofactor of the form c1 = 3`2. To clear this cofactor, the map P 7→ [3`]P is
sufficient for all curves in [FST10] except KSS and 6.6 where k ≡ 2, 3 mod 6.

Theorem (G1 and G2 membership testing)

Let q′ = q or resp. qk and c ′ = c1 or resp. c2. If ψ acts as the multiplication by λ on E(Fq′)[r] and
gcd(χ(λ), c ′) = 1 then

ψ(Q) = [λ]Q ⇐⇒ Q ∈ E(Fq′)[r]

with χ the characteristic polynomial of ψ.

Proposition (GT membership testing)

For z ∈ F∗pk and Φk the k-th cyclotomic polynomial, we have:

zΦk (p) = 1 and zp = z t−1 and gcd(p + 1− t,Φk(p)) = r =⇒ z r = 1 .

14/37

Co-factor clearing and subgroup membership

[Y.EH, A. Guillevic, T. Piellard - AfricaCrypt 2022]

Proposition (G1 co-factor clearing)

Many curve families have the G1 cofactor of the form c1 = 3`2. To clear this cofactor, the map P 7→ [3`]P is
sufficient for all curves in [FST10] except KSS and 6.6 where k ≡ 2, 3 mod 6.

Theorem (G1 and G2 membership testing)

Let q′ = q or resp. qk and c ′ = c1 or resp. c2. If ψ acts as the multiplication by λ on E(Fq′)[r] and
gcd(χ(λ), c ′) = 1 then

ψ(Q) = [λ]Q ⇐⇒ Q ∈ E(Fq′)[r]

with χ the characteristic polynomial of ψ.

Proposition (GT membership testing)

For z ∈ F∗pk and Φk the k-th cyclotomic polynomial, we have:

zΦk (p) = 1 and zp = z t−1 and gcd(p + 1− t,Φk(p)) = r =⇒ z r = 1 .

14/37

Overview

8 Co-factor clearing and subgroup membership

9 Pairings in R1CS (details)

10 BLS24-317 vs. BLS12-381

11 Cycles (details)

15/37

Pairings out-circuit: Miller algorithm

G2: - Coordinates compressed in Fqk/d instead of Fqk

(where d is the twist degree) [BN06]
- Homogeneous projective coordinates (X ,Y ,Z) [AKL+11, ABLR14]
- Sharing computation between Double/Add and lines
evaluation [AKL+11, ABLR14]

Finite fields: - Fp → · · · → Fpk/d → · · · → Fpk

- efficient representation of line (multiplying the line evaluation by a factor →
wiped out later) [ABLR14]
- efficient sparse multiplications in Fpk [Sco19]

16/37

Pairings out-circuit: Final exponentiation

pk − 1

r
=

pk − 1

Φk(p)︸ ︷︷ ︸
easy part

· Φk(p)

r︸ ︷︷ ︸
hard part

easy part: a polynomial in p with small coefficients (Frobenius maps)
e.g. (BLS12): 1F2 + 1Conj + 1Inv + 1Mul in Fp12

hard part: More expensive. Vectorial or lattice-based
Optimizations [HHT20, AFK+13, GF16]
dominating cost: CycloSqr [GS10, Kar13] + Mul in Fpk

17/37

Pairing in-circuit
Finite fields

R1CS is about writing o = l · r
Over Fp (Fr of BW6):

Square = Mul (o = l · l)
Inv = Mul + 1C (1/l = o → 1

?
= l · o with o an input hint)

Div = Mul + 1C (r/l = o → r
?
= l · o with o an input hint)

Inv+Mul → Div

Over Fpe :

Square 6= Mul (e.g. Fp2 2C vs 3C)

Inv = Mul + eC (1/l = o → 1
?
= l · o with o an input hint)

Div = Mul + eC (r/l = o → r
?
= l · o with o an input hint)

Inv+Mul → Div

18/37

Pairing in-circuit
Affine arithmetic

G2 Double: [2](x1, y1) = (x3, y3)

λ = 3x2
1/2y1

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

G2 Add: (x1, y1) + (x2, y2) = (x3, y3)

λ = (y1 − y2)/(x1 − x2)

x3 = λ2 − x1 − x2

y3 = λ(x2 − x3)− y2

Div (5C) Sq (2C) Mul (3C) total

Double 1 2 1 12C

Add 1 1 1 10C

Tailored optimization: Short addition chain of the seed x with inverted Double/Add wieghts!
(cf. github.com/mmcloughlin/addchain)

19/37

github.com/mmcloughlin/addchain

Pairing in-circuit
Affine arithmetic

In the Miller loop, when b = 1 =⇒ [2]R + Q → 22C
Instead: [2]R + Q = (R + Q) + R → 20C
Better: omit yR+Q computation in (R + Q) + R → 17C [ELM03]
G2 Double-and-Add: [2](x1, y1) + (x2, y2) = (x4, y4)

λ1 = (y1 − y2)/(x1 − x2)

x3 = λ2
1 − x1 − x2

λ2 = −λ1 − 2y1/(x3 − x1)

x4 = λ2
2 − x1 − x3

y4 = λ2(x1 − x4)− y1

Div (5C) Sq (2C) Mul (3C) total

Double-and-Add 2 2 1 17C

20/37

Pairing in-circuit
lines evaluation

` is ay + bx + c = 0 ∈ Fp2

`ψ([2]R)(P) and `ψ(R+Q)(P) are of the form (a′yP , 0, 0, b
′xP , c

′, 0) ∈ Fp12

(ψ : E ′(Fpk/d)→ E (Fpk)) [ABLR14]
→ sparse multiplication (1) in Fp12

precompute 1/yP (5C) and xP/yP (5C) and `(P) becomes
(1, 0, 0, b′xP/yP , c

′/yp, 0) ∈ Fp12

→ better sparse multiplication (2) in Fp12

total

Full Mul 54C

Sparse Mul (1) 39C

Sparse Mul (2) 30C

21/37

Pairing in-circuit
Final exponentiation

Easy part:

t . Con jugate (m)
m. I n v e r s e (m) // 66C
t . Mul (t , m) // 54C
m. F r o b e n i u s S q u a r e (t)
m. Mul (m, t) // 54C

22/37

Pairing in-circuit
Final exponentiation

Easy part:

t . Con jugate (m)
<@\ t e x t c o l o r { b l u e }{ t . Div (t , m) // 66C}@>
m. F r o b e n i u s S q u a r e (t)
m. Mul (m, t) // 54C

23/37

Pairing in-circuit
Final exponentiation

Easy part: (more on that later)

<@\ t e x t c o l o r { b l u e }{ t . Div(−m[0] , m[1]) // 18C}@>
<@\ t e x t c o l o r { b l u e }{m. T o r u s F r o b e n i u s S q u a r e (t)}@>
<@\ t e x t c o l o r { b l u e }{m. TorusMul (m, t) // 42C}@>
<@\ t e x t c o l o r { r e d }{ r := Decompress (m) // 48C}@>

total

Old 174

New 120

New (Torus) 60 (or 108)

24/37

Pairing in-circuit
Final exponentiation

Hard part (Hayashida et al. [HHT20])

<@\ t e x t c o l o r { b l u e }{ t [0] . C y c l o t o m i c S q u a r e (m)}@>
<@\ t e x t c o l o r { b l u e }{ t [1] . Expt (m)}@> // mx a d d c h a i n (Mul + C y c l o S q r)
t [2] . Con jugate (m)
<@\ t e x t c o l o r { b l u e }{ t [1] . Mul (t [1] , t [2]) }@>
<@\ t e x t c o l o r { b l u e }{ t [2] . Expt (t [1]) }@>
t [1] . Con jugate (t [1])
<@\ t e x t c o l o r { b l u e }{ t [1] . Mul (t [1] , t [2]) }@>
<@\ t e x t c o l o r { b l u e }{ t [2] . Expt (t [1]) }@>
t [1] . F r o b e n i u s (t [1])
<@\ t e x t c o l o r { b l u e }{ t [1] . Mul (t [1] , t [2]) }@>
<@\ t e x t c o l o r { b l u e }{m. Mul (m, t [0]) }@>
<@\ t e x t c o l o r { b l u e }{ t [0] . Expt (t [1]) }@>
<@\ t e x t c o l o r { b l u e }{ t [2] . Expt (t [0]) }@>
t [0] . F r o b e n i u s S q u a r e (t [1])
t [1] . Con jugate (t [1])
<@\ t e x t c o l o r { b l u e }{ t [1] . Mul (t [1] , t [2]) }@>
<@\ t e x t c o l o r { b l u e }{ t [1] . Mul (t [1] , t [0]) }@>
<@\ t e x t c o l o r { b l u e }{m. Mul (m, t [1]) }@>

25/37

Pairing in-circuit
Arithmetic in cyclotomic groups

Table: Square in cyclotomic Fp12

Compress Square Decompress

Normal 0 36 0

Granger-Scott [GS10] 0 18 0

Karabina [Kar13]
SQR2345

0 12 19

Karabina [Kar13]
SQR12345

0 15 8

Torus (T2)[RS03] 24 24 48

1 or 2 squarings =⇒ Granger-Scott

3 squarings =⇒ Karabina SQR12345

≥ 4 squarings =⇒ Karabina SQR2345
26/37

Pairing in-circuit
Arithmetic in cyclotomic groups

Table: Mul in cyclotomic Fp12

Compress Multiply Decompress

Normal 0 54 0

Torus (T2)[RS03] 24 42 48

Compression/Decompression only once!

Whole final exp. in compressed form over Fp6

Better:

Absorb the compression in the easy part computation
Do we really need decompression?

27/37

Pairing in-circuit
Algebraic tori

Definition

Let Fq be a finite field and Fqk a field extension of Fq. Then the norm of an element α ∈ Fqk

with respect to Fq is defined as the product of all conjugates of α over Fq, namely

NF
qk
/Fq

= ααq · · ·αqk−1
= α(qk−1)/(q−1)

Tk(Fq) =
⋂

Fq⊂F⊂Fqk

ker(NF
qk
/F)

Lemma

Let α ∈ Fqk , then α(qk−1)/Φk (q) ∈ Tk(Fq)

28/37

Pairing in-circuit
Algebraic tori in cryptography

T2 cryptosystem introduced by Rubin and Silverberg [RS03].
Let α = c0 + ωc1 ∈ Fqk − {1,−1} (cyclotomic subgroup), we have

compress f (α) = (1 + c0)/c1 = β ∈ Fqk/2

decompress f −1(β) = (β + ω)/(β − ω) = α

Mul β1 × β2 = (β1β2 + ω)/(β1 + β2)

Square β2 = 1
2 (β + ω/β)

Inverse 1/β = −β

T2 arithmetic is R1CS-friendly!

29/37

Pairing in-circuit
Absorbing the compression

Easy part: m(q12−1)/Φk (p) = m(p6−1)(p2+1)

Let α = c0 + ωc1 ∈ Fq12 − {1} (cyclotomic subgroup),

αp6−1 = (c0 + ωc1)p
6−1

= (c0 + ωc1)p
6
/(c0 + ωc1)

= (c0 − ωc1)/(c0 + ωc1)

= (−c0/c1 + ω)/(−c0/c1 − ω)

f (α) = (−c0/c1)p
2+1

= (−c0/c1)p
2 × (−c0/c1)

→ 60C

30/37

Pairing in-circuit
Further optimizations

Carry the whole Miller loop in compressed form (e.g. [NBS08])

Isolate m = 1 (just m = `→ less constraints)

Write m as: f (m) = (−c0/c1)p
2 × (−c0/c1)

Use T2 cyclotomic squaring

Write lines as

(1, 0, 0, b′x/y , c ′/y , 0) ∈ Fp12 7→ −1/(b′x/y + ωc ′/y)p
2+1 = −1/D ∈ Fp6

Cyclotomic sparse Mul as:

f (m)× f (`) = (f (m)f (`) + ω)/(f (m) + f (`))

= (−f (m) + ωD)/(f (m)D + 1)

31/37

Overview

8 Co-factor clearing and subgroup membership

9 Pairings in R1CS (details)

10 BLS24-317 vs. BLS12-381

11 Cycles (details)

32/37

BLS24-317

curve seed x 2-adicity r = #G1 p,G1 pk/d ,G2 p ≡ 3 mod 4 security

BLS12-381 0xd9018000 (HW=6) 60 255 317 1268 3 127

BLS12-381 -0xd201000000010000 (HW=6) 32 255 381 762 3 126

Benchmark BLS12-381 (ms/op) BLS24-317 (ms/op) delta

Commit 30.66 23.82 -22.31%
Open 32.79 25.87 -21.11%
Verify 1.41 3.38 +139.46%

Batch Verify (10) 1.83 3.78 +106.79%

commitments and openings → 20% faster

verification is way slower but still acceptable (3.7 ms for a batch of 10)

33/37

Overview

8 Co-factor clearing and subgroup membership

9 Pairings in R1CS (details)

10 BLS24-317 vs. BLS12-381

11 Cycles (details)

34/37

cycles: negative results

There are no 2-cycles of elliptic curves with embedding degrees (5, 10), (8, 8) or (12, 12),
which means that there are no optimal (in terms of parameter sizes) pairing-friendly
2-cycles at the 128-bit security level.

There are no pairing-friendly cycles with more than 2 curves with the same CM
discriminant D > 3, which implies that elliptic curves from families of varying
discriminants must be used to construct cycles.

There are no cycles of prime-order pairing-friendly curves only from the Freeman and
Barreto-Naehrig families; or cycles of composite-order elliptic curves. This motivates the
search for new constructions of prime-order pairing-friendly curves.

35/37

cycles: positive results

(6,4,6,4) 4-cycle
(6,4) 2-cycle (6,4) 2-cycle

E1 E2 E3 E4

k 6 4 6 4

p(x) 4x2 + 1 4x2 + 2x + 1 4x2 + 1 4x2 − 2x + 1

r(x) 4x2 + 2x + 1 4x2 + 1 4x2 − 2x + 1 4x2 + 1

t(x) −2x + 1 2x + 1 2x + 1 −2x + 1

Table: Parameterized (6,4) 2-cycles and (6,4,6,4) 4-cycles of MNT curves, where 4-cycles are
constructed as the union of the 2-cycles.

36/37

cycles: open problems

Are there cycles of elliptic curves with the same embedding degree, and possibly the same
discriminant?

Are there pairing-friendly cycles of embedding degrees greater than 6?

Are there pairing-friendly cycles combining MNT, Freeman and Barreto-Naehrig curves?

37/37

	Motivation
	zk-SNARK
	SNARK-friendly curves
	SNARK-friendly 2-chains
	Pairings in R1CS
	Multi-scalar multiplication
	Conclusion
	Appendix
	Co-factor clearing and subgroup membership
	Pairings in R1CS (details)
	BLS24-317 vs. BLS12-381
	Cycles (details)

