
Zero-knowledge proofs and Blockchains

Youssef El Housni

UM6P Benguerir — April 24, 2025

1/49

whoami

PhD in cryptography — Ecole Polytechnique (Paris)

Cryptographer — Consensys (New York)

Co-founder of gnark

Co-founder of linea

2/49

Overview

1 Motivation

2 Blockchain

3 Zero-knowledge proofs

4 Applications

5 Research

3/49

Overview

1 Motivation

2 Blockchain

3 Zero-knowledge proofs

4 Applications

5 Research

4/49

The story of Alice and Bob

(Courtesy of CBINSIGHTS)

5/49

https://www.cbinsights.com/research/what-is-blockchain-technology/

The story of Alice and Bob

Courtesy of CBINSIGHTS

6/49

https://www.cbinsights.com/research/what-is-blockchain-technology/

Overview

1 Motivation

2 Blockchain

3 Zero-knowledge proofs

4 Applications

5 Research

7/49

Blockchains

8/49

Blockchains

9/49

Blockchains

How is a tx included in a block?

How is the longest chain is agreed upon?

10/49

Blockchains

How is a tx included in a block?

Signatures verification (Bitcoin: ECDSA/Schnorr, Ethereum: ECDSA/BLS)

How is the longest chain is agreed upon?

Consensus (Bitcoin: proof-of-work, Ethereum: proof-of-stake)

11/49

Blockchains

Digital signatures:

Public-key cryptography: Shcnorr but patented until 2020
ECDSA as a workaround but with caveats
Ethereum chooses BLS for aggregation and Bitcoin Schnorr for simplicity

12/49

Blockchains

Consensus:

Examples: proof-of-work, proof-of-stake, proof-of-space, proof-of-authority, proof-of-burn...
13/49

Blockchains

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

?

Paying −−−−−→
Problem

cost −−−−−→
Solution

?

14/49

Blockchains

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

?

Paying −−−−−→
Problem

cost −−−−−→
Solution

?

14/49

Overview

1 Motivation

2 Blockchain

3 Zero-knowledge proofs

4 Applications

5 Research

15/49

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

16/49

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

16/49

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

16/49

Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.

16/49

Toy example

?

17/49

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

18/49

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

18/49

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

18/49

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

18/49

Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c

18/49

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c = H(A, y)
s = n + c · x

π = (A, c, s)
g s ?

= A · y c

c
?
= H(A, y)

19/49

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

g︸︷︷︸
Setup

; A = gn

c = H(A, y)
s = n + c · x︸ ︷︷ ︸

Prove

π = (A, c, s)︸ ︷︷ ︸
proof

g s ?
= A · y c

c
?
= H(A, y)︸ ︷︷ ︸

Verify

20/49

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives

21/49

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives

21/49

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives

21/49

ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives
21/49

Blockchains and ZKP

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

ZKP

setup, prover?, verifier?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

ZKP

Communication complexity

Paying −−−−−→
Problem

cost −−−−−→
Solution

ZKP

Verifier complexity , prover?

22/49

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [Kil92]

Succinct Non-Interactive ZKP [Mic94]

Pairing-based succinct NIZK [Gro10]

“SNARK” terminology and characterization of existence [BCCT12]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Gro16]

SNARK with universal and updatable setup [GKM+18, MBKM19, GWC19, CHM+20]

23/49

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [Kil92]

Succinct Non-Interactive ZKP [Mic94]

Pairing-based succinct NIZK [Gro10]

“SNARK” terminology and characterization of existence [BCCT12]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Gro16]

SNARK with universal and updatable setup [GKM+18, MBKM19, GWC19, CHM+20]

23/49

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [Kil92]

Succinct Non-Interactive ZKP [Mic94]

Pairing-based succinct NIZK [Gro10]

“SNARK” terminology and characterization of existence [BCCT12]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Gro16]

SNARK with universal and updatable setup [GKM+18, MBKM19, GWC19, CHM+20]

23/49

ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [Kil92]

Succinct Non-Interactive ZKP [Mic94]

Pairing-based succinct NIZK [Gro10]

“SNARK” terminology and characterization of existence [BCCT12]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Gro16]

SNARK with universal and updatable setup [GKM+18, MBKM19, GWC19, CHM+20]

23/49

What is a zero-knowledge proof?

”I have a sound, complete and zero-knowledge proof that a statement is true” [GMR85].

Sound

False statement =⇒ cheating prover cannot convince honest verifier.

Complete

True statement =⇒ honest prover convinces honest verifier.

Zero-knowledge

True statement =⇒ verifier learns nothing other than statement is true.

24/49

zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof
that a statement is true and that I know a related secret”.

Succinct

A proof is very “short” and “easy” to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification (except the
proof message).

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

25/49

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

26/49

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

26/49

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

26/49

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

26/49

Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

26/49

(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , τ , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

TTP (secret trapdoor τ)
(pk, vk)← S(F , τ , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

27/49

(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , τ , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

MPC (secret trapdoor τ)
(pk, vk)← S(F , τ , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π

28/49

zk-SNARK

Succinctness: A proof is very ”short” and ”easy” to verify.

Definition [BCTV14b]

A succinct proof π has size Oλ(1) and can be verified in time Oλ(|F |+ |x |+ |z |), where Oλ(.)
is some polynomial in the security parameter λ.

29/49

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

30/49

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

30/49

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

30/49

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

30/49

zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.

30/49

Arithmetization

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

x3 + x + 5 = 35 (x = 3)

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x + 5

31/49

Arithmetization

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

x3 + x + 5 = 35 (x = 3)

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x + 5

31/49

Arithmetization
e.g. R1CS

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

L =


0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
5 0 0 0 0 1



R =


0 1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



O =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0



witness:

~w =
(
one x d a b c

)
=
(
1 3 35 9 27 30

)

O • ~w = L • ~w · R • ~w

32/49

Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X)R(X)− O(X) = H(X)T (X) (QAP ∈ F[X])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)

33/49

Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X)R(X)− O(X) = H(X)T (X) (QAP ∈ F[X])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)

33/49

Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X)R(X)− O(X) = H(X)T (X) (QAP ∈ F[X])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)

33/49

Succinct evaluation of polynomials

Instead of verifying the QAP on the whole domain F→ verify it in a single random point τ ∈ F.

Schwartz–Zippel lemma

Any two distinct polynomials of degree d over a field F can agree on at most a d/|F| fraction
of the points in F.

34/49

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

35/49

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

35/49

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

35/49

Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X) at τ without Bob learning L nor Alice learning τ .

35/49

Blind evaluation of polynomials

L(τ) = l0 + l1τ + l2τ
2 + · · ·+ ldτ

d ∈ F
C (L(τ)) = l0C (1) + l1C (τ) + l2C (τ2) + · · ·+ ldC (τd)

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

36/49

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

37/49

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

37/49

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

37/49

Blind evaluation of polynomials

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)

37/49

Blind evaluation of QAP

Blind evaluation can be achieved with black-box pairings:

e(C (H(τ)),C (T (τ)) · e(C (O(τ)),C (1)) = e(C (L(τ)),C (R(τ)))

e(H(τ)G ,T (τ)G) · e(O(τ)G ,G) = e(L(τ)G ,R(τ)G)

e(G ,G)H(τ)T (τ) · e(G ,G)O(τ) = e(G ,G)L(τ)R(τ)

ZH(τ)T (τ)+O(τ) = ZL(τ)R(τ)

38/49

Somewhat homomorphic commitment

Elliptic curves (DL):

E : y2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.
r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

A non-degenerate bilinear pairing e : G1 ×G2 → GT

non-degenerate: ∀P ∈ G1, P 6= O, ∃Q ∈ G2, e(P,Q) 6= 1GT

∀Q ∈ G2, Q 6= O, ∃P ∈ G1, e(P,Q) 6= 1GT

bilinear: e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab

1

39/49

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

40/49

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

40/49

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

40/49

A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.

40/49

Overview

1 Motivation

2 Blockchain

3 Zero-knowledge proofs

4 Applications

5 Research

41/49

Applications

Privacy: Monero, zcash, Aleo... or Tornado cash...

Scalability: Mina... or Linea, Aztec...

42/49

Overview

1 Motivation

2 Blockchain

3 Zero-knowledge proofs

4 Applications

5 Research

43/49

Proof composition: why?

Aggregation:

proof π

proof π1 proof π2 · · · proof πn

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V

44/49

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20, EG20, EG22, AEG23]

45/49

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20, EG20, EG22, AEG23]

45/49

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20, EG20, EG22, AEG23]

45/49

Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20, EG20, EG22, AEG23]

45/49

2-cycles and 2-chains

A 2-cycle of elliptic curves:

E1(Fq)

E0(Fp)

#E0(Fp) = q#E1(Fq) = p

A 2-chain of elliptic curves:

E1(Fq)

E0(Fp)

#E1(Fq) = h · p

46/49

Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...

47/49

Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...

47/49

Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...

47/49

Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...

47/49

Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...

47/49

Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...

47/49

gnark playground

48/49

Thank you

website: https://yelhousni.eth.limo

email: youssef.elhousni@consensys.net

telegram: @ElMarroqui

x: @YoussefElHoun3

github: @yelhousni

49/49

https://yelhousni.eth.limo

References I

Diego F. Aranha, Youssef El Housni, and Aurore Guillevic.
A survey of elliptic curves for proof systems.
DCC, 91(11):3333–3378, 2023.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
From extractable collision resistance to succinct non-interactive arguments of knowledge,
and back again.
In Shafi Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard
Wu.
ZEXE: Enabling decentralized private computation.
In 2020 IEEE Symposium on Security and Privacy, pages 947–964. IEEE Computer
Society Press, May 2020.

1/7

References II

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 276–294. Springer, Berlin, Heidelberg, August 2014.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von neumann architecture.
In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796. USENIX
Association, August 2014.

Manuel Blum, Paul Feldman, and Silvio Micali.
Non-interactive zero-knowledge and its applications (extended abstract).
In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

2/7

References III

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur.
Geppetto: Versatile verifiable computation.
In 2015 IEEE Symposium on Security and Privacy, pages 253–270. IEEE Computer
Society Press, May 2015.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 738–768. Springer, Cham, May 2020.

3/7

References IV

Youssef El Housni and Aurore Guillevic.
Optimized and secure pairing-friendly elliptic curves suitable for one layer proof
composition.
In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579
of LNCS, pages 259–279. Springer, Cham, December 2020.

Youssef El Housni and Aurore Guillevic.
Families of SNARK-friendly 2-chains of elliptic curves.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 367–396. Springer, Cham, May / June 2022.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 626–645. Springer, Berlin, Heidelberg, May 2013.

4/7

References V

Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers.
Updatable and universal common reference strings with applications to zk-SNARKs.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 698–728. Springer, Cham, August 2018.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof-systems (extended abstract).
In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

Jens Groth.
Pairing-based non-interactive zero-knowledge proofs (invited talk).
In Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors, PAIRING 2010, volume 6487 of
LNCS, page 206. Springer, Berlin, Heidelberg, December 2010.

5/7

References VI

Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Berlin, Heidelberg, May 2016.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
PLONK: Permutations over Lagrange-bases for oecumenical noninteractive arguments of
knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019.

Joe Kilian.
A note on efficient zero-knowledge proofs and arguments (extended abstract).
In 24th ACM STOC, pages 723–732. ACM Press, May 1992.

6/7

References VII

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge SNARKs from linear-size universal and updatable structured
reference strings.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

Silvio Micali.
CS proofs (extended abstracts).
In 35th FOCS, pages 436–453. IEEE Computer Society Press, November 1994.

7/7

	Motivation
	Blockchain
	Zero-knowledge proofs
	Applications
	Research
	Appendix

