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The story of Alice and Bob

(Courtesy of CBINSIGHTS)
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Blockchains

How is a tx included in a block?

How is the longest chain is agreed upon?
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Blockchains

How is a tx included in a block?

Signatures verification (Bitcoin: ECDSA/Schnorr, Ethereum: ECDSA/BLS)

How is the longest chain is agreed upon?

Consensus (Bitcoin: proof-of-work, Ethereum: proof-of-stake)
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Blockchains

Digital signatures:

Public-key cryptography: Shcnorr but patented until 2020
ECDSA as a workaround but with caveats
Ethereum chooses BLS for aggregation and Bitcoin Schnorr for simplicity
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Blockchains

Consensus:

Examples: proof-of-work, proof-of-stake, proof-of-space, proof-of-authority, proof-of-burn...
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Blockchains

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

?

Paying −−−−−→
Problem

cost −−−−−→
Solution

?
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Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

Sound: Alice has a wrong solution =⇒ Bob is not convinced.

Complete: Alice has the solution =⇒ Bob is convinced.

Zero-knowledge: Bob does NOT learn the solution.
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Toy example

?
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Example: Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c
$←− Zr

c

s = n + c · x
s

g s ?
= A · y c

with A · y c = gn · g x ·c

then gn · g x ·c = gn+x ·c
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Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

A = gn

c = H(A, y)
s = n + c · x

π = (A, c, s)
g s ?

= A · y c

c
?
= H(A, y)
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Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that g x = y

n
$←− Zr

g︸︷︷︸
Setup

; A = gn

c = H(A, y)
s = n + c · x︸ ︷︷ ︸

Prove

π = (A, c, s)︸ ︷︷ ︸
proof

g s ?
= A · y c

c
?
= H(A, y)︸ ︷︷ ︸

Verify
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ZKP families

Expressivity

specific statement vs. general statement

Deployability

interactive vs. non − interactive protocol

trapdoored setup vs. transparent setup

Designated verifier vs. any verifier

Complexity

prover complexity (Alice)

verifier complexity (Bob)

communication complexity (size of the proof and the setup)

Security

Cryptographic assumptions

Cryptographic primitives
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Blockchains and ZKP

A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying ledger.

Transparent: everything is visible to everyone

Immutable: nothing can be removed once written

Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

ZKP

setup, prover?, verifier?

Immutable −−−−−→
Problem

scalability −−−−−→
Solution

ZKP

Communication complexity

Paying −−−−−→
Problem

cost −−−−−→
Solution

ZKP

Verifier complexity , prover?
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ZKP literature landmarks

First ZKP work [GMR85]

Non-Interactive ZKP [BFM88]

Succinct ZKP [Kil92]

Succinct Non-Interactive ZKP [Mic94]

Pairing-based succinct NIZK [Gro10]

“SNARK” terminology and characterization of existence [BCCT12]

Pairing-based SNARK in quasi-linear prover time [GGPR13]

Pairing-based SNARK with shortest proof and verifier time [Gro16]

SNARK with universal and updatable setup [GKM+18, MBKM19, GWC19, CHM+20]
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What is a zero-knowledge proof?

”I have a sound, complete and zero-knowledge proof that a statement is true” [GMR85].

Sound

False statement =⇒ cheating prover cannot convince honest verifier.

Complete

True statement =⇒ honest prover convinces honest verifier.

Zero-knowledge

True statement =⇒ verifier learns nothing other than statement is true.

24/49



zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct, non-interactive proof
that a statement is true and that I know a related secret”.

Succinct

A proof is very “short” and “easy” to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification (except the
proof message).

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.
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Preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π
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(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , τ , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

TTP (secret trapdoor τ)
(pk, vk)← S(F , τ , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π
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(Trapdoored) preprocessing zk-SNARK for NP language

F : public NP program, x , z : public inputs, w : private input
z := F (x ,w)

A zk-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , τ , 1λ)

Prove : π ← P(x , z ,w , pk)

Verify : false/true ← V (x , z , π, vk)

MPC (secret trapdoor τ)
(pk, vk)← S(F , τ , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?
π
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zk-SNARK

Succinctness: A proof is very ”short” and ”easy” to verify.

Definition [BCTV14b]

A succinct proof π has size Oλ(1) and can be verified in time Oλ(|F |+ |x |+ |z |), where Oλ(.)
is some polynomial in the security parameter λ.
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zk-SNARKs in a nutshell

Main ideas:

1 Reduce a ”general statement” satisfiability to a polynomial equation satisfiability.

2 Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high
probability.

3 Use homomorphic hiding cryptography to blindly verify the polynomial equation.

4 Make the protocol non-interactive.
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Arithmetization

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

x3 + x + 5 = 35 (x = 3)

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x + 5
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Arithmetization
e.g. R1CS

Statement → Arithmetic circuit → Intermediate representation → Polynomial identities → zk-
SNARK proof

L =


0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
5 0 0 0 0 1



R =


0 1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



O =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0



witness:

~w =
(
one x d a b c

)
=
(
1 3 35 9 27 30

)

O • ~w = L • ~w · R • ~w
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Arithmetization
e.g. Quadratic Arithmetic Program

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

L(X )R(X )− O(X ) = H(X )T (X ) (QAP ∈ F[X ])

L(τ)R(τ)− O(τ) = H(τ)T (τ) (trapdoor τ
$←− F)

C (L(τ)R(τ)− O(τ)) = C (H(τ)T (τ)) (Homomorphic commitment)
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Succinct evaluation of polynomials

Instead of verifying the QAP on the whole domain F→ verify it in a single random point τ ∈ F.

Schwartz–Zippel lemma

Any two distinct polynomials of degree d over a field F can agree on at most a d/|F| fraction
of the points in F.

34/49



Blind evaluation of polynomials

Statement→ Arithmetic circuit→ Intermediate representation→ Polynomial identities→ zk-SNARK
proof

Let’s take the example of polynomial L:

Alice can send L to Bob and he computes L(τ) → breaks the zero-knowledge.

Bob can send τ to Alice and she computes L(τ) → breaks the soundness.

=⇒ homomorphic cryptography to evaluate L(X ) at τ without Bob learning L nor Alice learning τ .
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Blind evaluation of polynomials

L(τ) = l0 + l1τ + l2τ
2 + · · ·+ ldτ

d ∈ F
C (L(τ)) = l0C (1) + l1C (τ) + l2C (τ2) + · · ·+ ldC (τd)

Somewhat homomorphic commitment w.r.t.:

depth-d additions (arbitrary d)

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).
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C (τ) = τG (DL)

L(τ)G = l0G + l1τG + l2τ
2G + · · ·+ ldτ

dG

depth-1 multiplications (for L(τ) · R(τ) and H(τ) · T (τ)).

C (τ1) = τ1G ; C (τ2) = τ2G

C (τ1) · C (τ2) = C (τ1 · τ2) (?)

e(C (τ1),C (τ2))︸ ︷︷ ︸
product of commitments

= Z τ1·τ2︸ ︷︷ ︸
new commitment to τ1 · τ2

(where Z = e(G , G) 6= 1)

(bilinear pairing)
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Blind evaluation of QAP

Blind evaluation can be achieved with black-box pairings:

e(C (H(τ)),C (T (τ)) · e(C (O(τ)),C (1)) = e(C (L(τ)),C (R(τ)))

e(H(τ)G ,T (τ)G ) · e(O(τ)G ,G ) = e(L(τ)G ,R(τ)G )

e(G ,G )H(τ)T (τ) · e(G ,G )O(τ) = e(G ,G )L(τ)R(τ)

ZH(τ)T (τ)+O(τ) = ZL(τ)R(τ)
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Somewhat homomorphic commitment

Elliptic curves (DL):

E : y2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.
r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

A non-degenerate bilinear pairing e : G1 ×G2 → GT

non-degenerate: ∀P ∈ G1, P 6= O, ∃Q ∈ G2, e(P,Q) 6= 1GT

∀Q ∈ G2, Q 6= O, ∃P ∈ G1, e(P,Q) 6= 1GT

bilinear: e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab

1
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A pairing-based SNARK

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

Setup: (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

Prove: π ← P(Φ,w , pk) where

π = (A,B,C ) ∈ G1 ×G2 ×G1 (Oλ(1))

Verify: 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai ]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ) can be
computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.
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4 Applications
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Applications

Privacy: Monero, zcash, Aleo... or Tornado cash...

Scalability: Mina... or Linea, Aztec...
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Proof composition: why?

Aggregation:

proof π

proof π1 proof π2 · · · proof πn

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V

constant-size
constant-time V
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Proof composition: how?

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)

V verification (eq. 1) is done in F∗
qk

FV program of V is natively expressed in F∗
qk

not Fr

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20, EG20, EG22, AEG23]
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2-cycles and 2-chains

A 2-cycle of elliptic curves:

E1(Fq)

E0(Fp)

#E0(Fp) = q#E1(Fq) = p

A 2-chain of elliptic curves:

E1(Fq)

E0(Fp)

#E1(Fq) = h · p
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Some contributions

Blockchain limitations: confidentiality and scalability

pairing-based zk-SNARKs are a solution (constant-size proof and fast verification)

What are SNARK-friendly curves? Fast arithmetic? [DCC 2022, AfricaCrypt 2022]

Proof composition for better confidentiality and scalability → 2-chains and 2-cycles
[CANS 2020, EuroCrypt 2022, DCC 2022, JoC 2024]

Pairings in R1CS for fast generation of the composed proof [ACNS 2023]

Multi-scalar multiplication for fast generation of proofs [TCHES 2023, ZPRIZE winner]

Implementations: gnark, linea, arkworks, sonobe, ...
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gnark playground
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Thank you

website: https://yelhousni.eth.limo

email: youssef.elhousni@consensys.net

telegram: @ElMarroqui

x: @YoussefElHoun3

github: @yelhousni
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