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m Pre-Big Bang: Circles and ellipses...

m Post-Big Bang: The mathematical foundations of elliptic curves
m Biodiversity: Elliptic curves species

m Homo genus: Elliptic curves in cryptography

m Fire control: Pairings in cryptography
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Apollonius of Perga (ca. 262190 BCE) Area: Tab
Isaac Newton 1669 _ L -
Leonard Euler 1773 Circumference: 4a fOZ \/1 — k2sin2(6)do
Colin McLaurin 1742 b2
Adrien-Marie Legendre 1786 + where k=1 ——
Niels Henrik Abel & Carl Jacobi 1825 + a?

Gauss 30y before (not published)

- Studying the inverse of elliptic integrals leads to some doubly periodic functions which came to be known
as elliptic functions (let’s call them g(z) in the sequel, because g looks nice). Furthermore, all the derivatives
are doubly periodic with the same periods and satisfy a cubic differential equation.

- Setting x= (z) and y=4'(z) gives a parameterization of the cubic curve known today as an elliptic curve.




Big Bang

1 2 \/
Short Weierstass elliptic curve E / K (where char(K) + 2,3) m / [\
y% =x3+ax + b where4a®+ 27b* # 0 \_/ \ \//\
Elliptic curves over K are isomorphic to E yr=x-x yr=x-x 4l

¢:E' > E where ¢(x,y) = (u ?x,u"3y) forsomeu € K*
The class of isomorphisms (and twists) is defined by the j-invariant :
4a3

(E) = 1728
JCE) 403 + 27h2




Post- Big Bang

We refine the definition of an elliptic curve over K (char(K) # 2,3) as follows:
{(xy) € K*|y* = x3 +ax +b, 4a’ + 27b? # 0} U {0}

With 0 the point at oo (projective geometry). We can define a group over elliptic curves.
Specifically:

m the elements of the group are the points of an elliptic curve,
m theidentityelementis the point O,

m theinverse of a point P is the one symmetric about the x-axis,
[ |

addition is given by the following rule: given 3 aligned, non-zero points P, Q and R, their
sumP+Q+R=0.

Note that with the last rule, we only require three aligned points without respect to order.
This means that, if P,Q and R are aligned, thenP + (Q + R) = Q+(P+R)=R+ (P +
Q) = --- = 0. Thisway, wehaveintuitivelyproved that the addition operator is associative and
commutative: We are in an abelian group.

But how do we actually compute the sum of two arbitrary points?




Post- Big Bang N

m Whatif P =0 or Q=07?
We can’t draw any line (O is not on the xy-plane). But given that we
have defined O as the identity element, P+ O =P VP ..

m Whatif P=-Q? ¢
The line going through the two points is vertical, thus does not
intersect the curve in a third point. But P is the inverse of Q, then we
have P+Q =P+ (-P ) = 0.

m Whatif P=Q? There are an infinite number of lines passing through
the point. We take the line tangent to the curve, why? consider Q' /~ o
P, as Q' tends towards P the line passing through P and Q" becomes =
tangent to the curve.

m Whatif P # Q, butthereis nothird point R?
We are in a case very similar to the previous one. In fact, we are in
the case where the line passing through P and Q is tangent to the
curve. Let us assume that P is the tangency point, then P + Q = —P.
If Q were the tangency point, then P + Q = —Q. v

Geometric addition

.

 J




Post- Big Bang

Elliptic curve: y2=x3+4+ax+b

Line : y=mx+n
. __Yp—Yq . . . _
where: m = — andn = yp —mxp = yg —mxg
3x3+a
orm = andn = yp — mxp
2yp
Intersection:  x® —m?x°+ (a —2m%xp — 2yp)x + (b + 2ypxp — y5 — mx5) = 0

~— Vieta’'s formulae to the rescue:

If x,, are roots of P(x) = ), p;x'then ), x; = — pz;l .Thus, xp + xo + xg = m*
char(K) Condition m Coordinates of P + Q
_ — m2 _ _
=+ 2’3 %P :'th M X =m Xp XQ
Xp ~ Xq y = —m(x — xp) — Yp
3x32 + a x =m2 — 2xP
+ 2,3 Xp =X P
e 2yp y = —m(x — xP) — yP

Geometric addition




Post- Big Bang

Other than addition, we can define another operation: scalar multiplication, that is:
nP=P+P+ ..+ P

ntimes

where n is a natural number. 0 (2%)

It may seem that nomputing nP requires n additions. However there is a fast algorithm called
double and add.

e.g. Taken = 151, its binary representation is 100101112 and can be turned into a sum of
“powers of two: 151 = 27 + 2% + 22 + 21 + 29 |nview of this, we can write:

151P =27P + 24P +22p +21p +20p
Other algorithms:

- Double-and-add always (side-channels), fixed and sliding window methods
(precomputation), NAF methods (negation is free), GLV and GLS methods (efficient
endomorphisms)...

- Montgomery ladder (differential x-addition), Edwards (unified formulae)...




Biodiversity O

- Biodiversity in fields
m Whatdoes E(R) look like?

Analytically, E(R) is isomorphic to the circle group S* or to two copies of the circle group S* x C,.

m What does E(C) look like?

y2:x3—4x + 067

Theorem (Mordell 1922) E(Q)

The points of an elliptic curve with coordinates in the complex numbers form a torus Theorem (Mazur 1977) E(Q)
) Conjecture (Elkies 2006, highest rank)
m Whatdoes E(Q) look like? Theorem (Siegel 1928) E(2)

Theorem (Hasse 1922) E(Fp)
The group of rational points E(Q) is a subgroup of the group of real points E(R)

What does E (Z) look like?
E(Z) is usually not a subgroup of E(Q)

m Whatdoes E(F,) look like? - :

E(F,) is a finite group

H ¥ HHHE




Biodiversity S B -

= Biodiversity in shapes . -
General Weirestrass : Ax3 + Bx2%y + Cxy? + ly)yx3_ L Ex2+ Fxy+Gy* +Hx+1y+]=0
Short Weierstrass : y*> = x3+ ax + b, (char # 2,3)

Normal Legendre : y? = x(x — 1)(x — A), (char # 2,3)
Montgomery : Ay? = x3 + Bx + x
Edwards: x2 + y% = 1 — dx?y?

Jacobi quartics: x? = y* —d? + 1

Hessian:x3—y3 + 1 = dxy

-4 -3 -2 -1 1] 1 2 | 4

- Biodiversity in coordinates

Peter L. Montgomery 1987

Affine or projective: (modified) jacobian, inverted, Lopez-Dahab... Hessian: Bemstein, Lange, Kohel
Edwards: Harold Edwards, Bernstein, Lange

http://hyperelliptic.org/EFD/g1p/index.html




Homo genus (Homo Sapiens)

m E(F,):{(x,y) € F3|y*=x3+ax + b (mod p), 4a® + 27b? # 0 (mod p)} U {0}
m Group order: How many points are on E(F,,)? = Schoof's algorithm (Bordeaux, 1995)
Hasse theorem:|p+1 — #E(F,)| < 2P

Frobenius endomorphism ¢,,: E(F,, ) - E(F,) where ¢, (x,y) = (x?,yP) and has the
characteristic polynomial £(x) = x> —tx +p

Chinese remainder theorem

m Cyclic subgroup order : the smallest positive integers.t. nP = 0

(p)

Lagrange theorem: n | #E(F,) then—2 =h €N

Find a generatorof order n: n(hP)=0 VP € E(F,)




Homo genus (Homo Erictus)

m The disretelogarithm problem (DLP): Given a, b in a cyclic group G, it is
computationally hard to recoverthe integer k suchthat a = bX

m The problemis quickly computable in a few special cases so choosingthe group G is
critical and a popular choice that provides good security assumptions is I,

m Bestalgortinm: General Number Field Sieve (GNFS) with sub-exponential complexity

1 3/64 3164 1 2
L, 3 |5 | =exp ?+0(1) (In3n) (In3Inn)

m The disretelogarithm problem over elliptic curves (ECDLP): Given two points P, Q in
E(IFp) it is computationally hard to recoverthe integer k suchthat P = kQ

m Bestalgorithm: Pollard’s p with complexity ~0 (\/n)




Reproduction of Homo Sapiens

- Purpose : ECDH (key exchange), ECDSA (signatures), EG-ElGamal{eneryption)—

(Koblitz 1985)

m Shape : Weierstrass, Montgemery, Edwards...

m Field IF,,: bit-length of p, char + 2,3 ...

m Group order n: bit-length, length ratio with p, prime/composite order...
m Coefficientsa and b (or d): nothing up my sleeve, number of twists...

m Frobeniustrace: t = 1 tricial DL (SSSS attack), t = 0 supersingular curve....

4p—t?
pz small ?
y

m Complex Multiplication discriminant: |D| =

m Security of the curve twists...

m Big embedding degree... (pairings)



Reproduction of Homo Sapiens

- Most popular curve: NIST P-256 y2 = x3 — 3x + b (mod p) of Weierstrass shape defined over F,

224 192

Where: p = 2256 - 2°°% + 2777 + 296 — 1 (Solinas prime number of Generelized Mersenne number) of 256 bit-length and

b =4105836372515214212932612978004726840911444101599372555483525631403946 7401291

that comes from a seed s = ¢c49d3608 86e70493 6a6678el 139d26b7 819f7e90

The curve has prime ordern = 115792089210356248762697446949407573529996955224135760342422259061068512044369
of 256 bit length.

The Frobenius trace: t = 89188191154553853111372247798585809583 (ordinary curve)

CM discriminant : |[D| = 455213823400003756884736869668539463648899917731097708475249543966132856781915

gnl))/ one twist (quadratic) of order n’ = 3317349640749355357762425066592395746459685764401801118712075735758936647 (241
its

Cofactor of the twistis3 X 5 x 13 x 179

Embeddingdegree of the curve
k = 38597363070118749587565815649802524509998985074711920114140753020356170681456

And embedding degree of the twisted curve
k' = 1658674820374677678881212533296197873229842882200900559356037867879468323




Fire control

André Weil (1940) in the military prison in Rouen

Let E(IF,) be an EC and G a subgroup of order n (remember n|p + 1 —t)

A (cryptographic) pairing (of type 1) on elllptlc curvesisamape:G X G - F pk where k
is the smallest positive integer s.t. n|p" — 1. The pairing must be:

- Bilinear:e(P +R,Q) = e(P,Q)e(P,R) and e(P,R + Q) = e(P,R)e(P, Q) thus

e(aP,bQ) = e(P,Q)*

- Non-degenerate:VP 3Q e(P,Q) # 1andVQ 3P e(P,Q) # 1

- Efficiently computable!

e.g. : Well, Tate, Optimal Ate...
. - Uy U
—> lllustration example : e(u, v) = det(vo U1) = UyV; — U Vy

Alternacy: e(u, v)=-e(v, 1) — e(u, u) = 0 (or any linear comibation of u)




Fire control

Types of pairings é:G; X G, = F k
m Type 1:G; = G,
Distorsion maps f (only on supersingular) é(P, Q) = e(P, f(Q)).

e.g. Supersingular curves with k = 2 admit particularly simple distortion maps, namely,
Y(x,y) = ((3x,y)fory? =x3 + 1overp =5 andp =2 (mod 3), where {3 is
primitive third root of unity in IF )2

m Type 2: G; # G,

There is an efficiently computable monomorphism ¢ from G, to G;.

Reductionist proofs but hashing or random sampling in G, seems to be imposssible.
m Type 3:G; # Gy

there is no apparent, efficiently computable monomorphism G, to G4



Fire control: Destructive use

MOV attack (Weil pairing) and Frey-Ruck attack (Tate pairing)
Let Q = nP with P and Q public and n secret we have e(P, Q) = e(P,P) "

public public
Tranfer the ECDLP over E(IF,,) (best attack Pollard with quadratic complexity)

to DLP over IFpk (best attack GNFS with sub-exponential complexity)
So k has to be big enough (e.g. P-256 k is 255 bits, supersignularEC k < 6)

Menezes, Okamoto, Vanstone (1993)
G. Frey and H.-G. Ruck (1994)



Fire control: Constructive use

One-roundtripartite Diffie-Hellman (Antoine Joux, 2000)

Given Alice (a/aG), Bob (b/bG) and Cécile (c/cG) the secret is
(G, E)%° = elaf, e = elot,c0)? = eled, BE)?

BLS (short) signatures (Boneh, Lynn, Shacham,2004)
Alice (a/A=aQ) signs a message m € {0,1}* as S = aH (m) where H hashes m into G,
Anyone can verify e(S,G) = e(4, H(m))

Identity-based encryption (Boneh, Franklin,2001)

Pairing-based zero knowledge proofs (zkSNARKs) (Jens Groth, 2006)

[BGNO5] Pairing-based double-homomorphic
encryption scheme

[GrothO6] NIZK proofs for practical language (pairing-
product equations)




Pairing-friendly elliptic curves

From CM theory an EC E(IF,) satisfies

Pairing-friendly

4p — t2 _ DyZ and 4r = (t _ 2)2 + DyZ }'[Ii[]!]{' CNTVES
Where t is the Frobenius trace, r the subgroup ";“"i“*'-‘ 'E"I;j‘l"‘-*_ltf“‘
- - o - G CHrYEs I [Ares
order, D the CM discriminat (Frobenius map /N AN
discriminant) and y an integer. N\ Supersingalr  Cocks-Pinch  DEM curves
N enrves (93) crrees (64.1) (44.2}

Pairing-friendliness conditions:

Dparse t'muph-t;-
- n = #E([Fp) =P + 1 —t where |t| < 2\/19 [milies fanmiless
{4h) ~ (46)
- 1in A
_ rlpk — 1 1[_:‘-»."]'..(&1‘1,'_ (L.'L'r'lntu[lli;':f Ti:::;ll:[[:: i';'fﬂl-HH}Tl'tn
Freeman families (§6.1) ‘[“li "‘:l families (56.3)

2 — 2 :
- T = 4p — Dy (Wlth small | D | ) Freeman, Scott, Teske (2006)




Pairing-friendly elliptic curves

m Cocks-Pinch strategy (C. Cocks and R.G.E. Pinch in an unpublished manuscript, 2001)

1. Fix D, k and choose a prime r.
Require that k divides r — 1 and —D is a square mod r.

r—1

2.Computet = 1 + x « for x a generatorof (Z /Z)*.
3. Compute y = 5%_12) (mod 1)

2 2
4, Computep = C +4Dy ) (in Q).

5. If p is an integer and prime, use CM method to construct elliptic curve over I,
with an order-r subgroup.

—> y is constructed so that CM equations are automatically satisfied.
- Since t, y are essentially random integersin [0,7),p ~ 1r%,s0p = 2.



Pairing-friendly elliptic curves

m Complex Multiplication method

Once we find an elliptic curve that has a field size p, and order r a Frobenius trace t,
a CM discriminant D and an embedding degree k that verifies all the requirements
needed, the method starts by:

1. Find any root j of the Hilbert polynomial Hy (x) (if j = O or 1728 we wind up with
special curves)

_
2. Setl = e (mod p)
then the curve is y? = x3 + 3lc? + 21c3. First, we pick c=1 so the curve has an
order p+t+1 or p-t+1. Then we choose a random point and multiply it by p-t+1 if it O
then the curve is y? = x3 + 3lx + 21 otherwise it is a quadratic twist and we
choose c to be some quadratic nonresidue ¢' and the curve is

y? = x3 4+ 3kc'? + 2kc'3




Pairing-friendly elliptic curves

m MNT curves strategy (A. Miyaji, M. Nakabayashi,and S. Takano, 2001)

First used by Miyaji-Nakabayashi-Takano; also used by Scott-Barreto (2006), Barreto-
Naehrig (2006) and Freeman (2008) (paremetrize integers by polynomials)

1. Fix D, k, and choose polynomials t(x),h(x). h(x) = 1 if searchingfor curves of prime
order.

Choose r(x) an irreducible factor of @, (t(x) — 1).
Compute p(x) = h(x)r(x) + t(x) — 1.
Find integer solutions (x, y) to CM equation Dy? = 4h(x)r(x) — (t(x) — 2)*

o kB~ @D

If p(x), r(x) are both prime, use CM method to construct elliptic curve over [Fp(x) with
h(x)r(x) points.



Pairing-friendly elliptic curves

MNT curves strategy

If f(x) = 4h(x)r(x) — (t(x) — 2)* has deg = 3the eq. Dy? = f(x) has finitely many
solutions. We need to choose h(x), r(x) and t(x) so that f(x) is quadratic or has multiple roots.

- Goal: Choose t (x), find factor r (x) of ®,(t (x) — 1), such that f(x) is quadratic.

- Solution:

1. Choose t(x) linear; then r(x) is quadratic, and so is f(x).

2. Use standard algorithms to find solutions (x,y) to Dy? = f(x) (Pell-Fermat equation)

3. If no solutions of appropriate size, or g(x) or r(x) not prime, choose different D and try
again.

m Scott-Barreto extend MNT idea by allowing “cofactor” h(x) # 1. Find many more suitable
curves than original MNT construction.

m Barreto-Naehrig: Choose t(x), find factor r(x) of @, (t(x) — 1), such that f(x) has

multiple root.



Cycles of pairing-friendly elliptic curves

An aliquot cycle (Silverman, Stange 2011) of length m is s.t.
#E1([Fp1) = Pm» #EZ(IFpZ) = p1, #E3(F3) = py, .., #Em(IFpm) = Pm-1

If all curves are pairing-friendly, it is a pairing-friendly cycle (Chiesa, Chua, Weidner 2018)

m Application: Recursive zkSNARKs (BCCT13, BCTV1b)
m Consutructions: MNT curves (libsnark), chains (ZEXE 2018)
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Curve shape, representation DBEL ADD mADD mDBL TPL DBEL+ADD

Short Weierstrass projective 11 14 11 8
A p p e n d i X Short Weierstrass projective with ad=-1 11 14 11 a8
Short Weierstrass projective with ad4=-3 10 14 11 8
Short Weierstrass Relative Jacobian!'] 10 | 11 (7 (7 18
Tripling-oriented Doche—Icart-Kohel curve |9 17 | 1 6 12
Hessian curve extended 9 12 11 9
Hessian curve projective 8 12 | 10 & 14
Jacobi quartic XYZ 8 13 11 5
Jacobi quartic doubling-oriented XYZ 8 13 11 B
Twisted Hessian curve projective 8 12 12 a8 14
Doubling-oriented Doche—Icart-Kohel curve | 7 17 |12 6
Jacobi intersection projective 7 14 12 & 14
Jacobi intersection extended 7 12 11 7 16
Twisted Edwards projective 7 11 10 6
Twisted Edwards Inverted 7 10 |9 6
Twisted Edwards Extended 8 9 8 7
Edwards projective 7 11 9 & 13
Jacobi quartic doubling-criented XXYZZ |7 11 9 5] 14
Jacobi guartic XXYZZ 7 11 ] 6 14
Jacobi quartic XXYZZR 7 10 9 7 15
Edwards curve inverted 7 10 8 B
Montgomery curve 4 3




