Optimized and secure pairing-friendly elliptic curve suitable for one layer proof composition

Youssef El Housni¹ Aurore Guillevic²

¹Ernst & Young, Inria and École polytechnique, Paris, France youssef.el.housni@fr.ey.com

²Université de Lorraine, CNRS, Inria, LORIA, Nancy, France aurore.guillevic@inria.fr

zkSummit 5, March 2020

Inda -

Overview

Preliminaries

- Zero-knowledge proof
- 7K-SNARK

Proof composition

- Notations
- Techniques

Our work

- Theory
- Implementation

Applications

"I have a *sound*, *complete* and *zero-knowledge* proof that a statement is true".

Sound

If the statement is false, no cheating prover can convince an honest verifier that it is true, except with some small probability.

Complete

If the statement is true, an honest verifier will be convinced of this fact by an honest prover.

Zero-knowledge

If the statement is true, no verifier learns anything other than the fact that the statement is true.

"I have a *computationally sound*, *complete*, *zero-knowledge*, *succinct*, *non-interactive* proof that a statement is true and that I know a related secret".

Succinct

An honestly-generated proof is very "short" and "easy" to verify.

Non-interactive

No interaction is necessary between the prover and the verifier in order to respectively generate the proof and verify it.

ARgument of Knowledge

An honest verifier is convinced that a comptutationally bounded prover knows a secret information.

Let *F* be a public NP program, *x* and *z* be public inputs, and *w* be a private input such that z := F(x, w). A ZK-SNARK consists of algorithms *S*, *P*, *V* s.t. for a security parameter λ :

rapdoored Setup:	(<i>pk</i> , <i>vk</i>)	\leftarrow	$S({\it F}, {m au}, 1^\lambda)$
Prove:	π	\leftarrow	P(x, z, w, pk)
Verify:	0/1	\leftarrow	$V(x, z, \pi, vk)$

7

Succinctness: An honestly-generated proof is very "short" and "easy" to verify.

Definition [BCTV14b]

A succinct proof π has size $O_{\lambda}(1)$ and can be verified in time $O_{\lambda}(|F| + |x| + |z|)$, where $O_{\lambda}(.)$ is some polynomial in the security parameter λ .

- $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.
- r prime divisor of $\#E(\mathbb{F}_q) = q + 1 t$, t Frobenius trace.
- -D CM discriminant, $4q = t^2 + Dy^2$ for some integer y.
- d degree of twist.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- $\mathbb{G}_1 \subset E(\mathbb{F}_q)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})$ two groups of order r.
- $\mathbb{G}_T \subset \mathbb{F}_{a^k}^*$ group of *r*-th roots of unity.
- pairing $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$.

Proof composition

Example: Groth16 [Gro16] Given an instance $\Phi = (a_0, \ldots, a_\ell) \in \mathbb{F}_r^\ell$ of a public NP program F• $(pk, vk) \leftarrow S(F, \tau, 1^{\lambda})$ where $vk = (vk_{\alpha,\beta}, \{vk_{\pi_i}\}_{i=0}^{\ell}, vk_{\gamma}, vk_{\delta}) \in \mathbb{G}_T \times \mathbb{G}_1^{\ell+1} \times \mathbb{G}_2 \times \mathbb{G}_2$ • $\pi \leftarrow P(\Phi, w, pk)$ where $\pi = (A, B, C) \in \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1$ $(O_{\lambda}(1))$ • $0/1 \leftarrow V(\Phi, \pi, vk)$ where V is $e(A, B) = vk_{\alpha,\beta} \cdot e(vk_x, vk_y) \cdot e(C, vk_{\delta})$ $(O_{\lambda}(|\Phi|))$ (1)and $vk_x = \sum_{i=0}^{\ell} [a_i] vk_{\pi_i}$ depends only on the instance Φ and $vk_{\alpha,\beta} = e(vk_{\alpha}, vk_{\beta})$ can be computed in the trusted setup for $(\mathbf{v}\mathbf{k}_{\alpha}, \mathbf{v}\mathbf{k}_{\beta}) \in \mathbb{G}_1 \times \mathbb{G}_2.$

Proof composition

A proof of a proof

Since the verification algorithm V (Eq. 1) is a NP program, generate a new proof that verifies the correctness the old proof.

Remember that, for pairing-based SNARKs, Eq. 1 is in \mathbb{F}_{q^k} and Φ in \mathbb{F}_r , where q is the field size of an elliptic curve E and r its prime subgroup order.

- 1st attempt: choose a curve for which q = r (impossible)
- 2nd attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations (× log q blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [BCTV14a, BCG⁺20]

Definition

An *m*-chain of elliptic curves is a list of distinct curves $E_1/\mathbb{F}_{q_1}, \ldots, E_m/\mathbb{F}_{q_m}$ where q_1, \ldots, q_m are large primes and

$$\#E_1(\mathbb{F}_{q_1}) = q_2, \dots, \#E_i(\mathbb{F}_{q_i}) = q_{i+1}, \dots, \#E_{m-1}(\mathbb{F}_{q_{m-1}}) = q_m$$

Definition

An *m*-cycle of elliptic curves is a list of distinct curves $E_1/\mathbb{F}_{q_1}, \ldots, E_m/\mathbb{F}_{q_m}$ where q_1, \ldots, q_m are large primes and

$$\#E_1(\mathbb{F}_{q_1}) = q_2, \dots, \#E_i(\mathbb{F}_{q_i}) = q_{i+1}, \dots, \#E_{m-1}(\mathbb{F}_{q_{m-1}}) = q_m,$$

$$\#E_m(\mathbb{F}_{q_m}) = q_1$$

Proof composition

cycles and chains of pairing-friendly elliptic curves

Figure: Examples of pairing-friendly amicable cycles and chains.

E/\mathbb{F}_q	q	r	k	d	a, b	λ
MNT4	$q_4 = r_6 (298b)$	$r_4 = q_6 \ (298b)$	4	2	a = 2, b = *	32
MNT6	$q_6 = r_4 \ (298b)$	$r_6 = q_4 \ (298b)$	6	2	a = 11, b = *	50
MNT4-753	$q'_4 = r'_6$ (753b)	$r'_4 = q'_6$ (753b)	4	2	<i>a</i> = 2, <i>b</i> = *	128
MNT6-753	$q_6' = r_4'$ (753b)	$r_6' = q_4'$ (753b)	6	2	a = 11, b = *	128
BLS12-377	<i>q_{BLS}</i> (377b)	<i>r_{BLS}</i> (253b)	12	6	a = 0, b = 1	128
SW6	<i>q_{sw6}</i> (782b)	$r_{SW6} = q_{BLS}$ (377b)	6	2	<i>a</i> = 5, <i>b</i> = *	128
This work	q (761b)	$r = q_{BLS}$ (377b)	6	6	a = 0, b = -1	128

Table: 2-cycle and 2-chain examples.

Recall that E/\mathbb{F}_q : $y^2 = x^3 + ax + b$ has a subgroup of order r, an embedding degree k, a twist of order d and an approximate security of λ -bit.

Our work ZK-curves

SNARK • E/\mathbb{F}_a BN, BLS12, BW12?, KSS16? ... [FST10] pairing-friendly • r-1 highly 2-adic Recursive SNARK (2-cycle) • E_1/\mathbb{F}_{q_1} and E_2/\mathbb{F}_{q_2} MNT4/MNT6 [FST10, Sec.5], ? [CCW19] both pairing-friendly • $r_2 = q_1$ and $r_1 = q_2$ • $r_{\{1,2\}} - 1$ highly 2-adic • $q_{\{1,2\}} - 1$ highly 2-adic Recursive SNARK (2-chain) BLS12 (seed $\equiv 1 \mod 3.2^{adicity}$) [BCG⁺20], ? • E_1/\mathbb{F}_{a_1} pairing-friendly • $r_1 - 1$ highly 2-adic • $q_1 - 1$ highly 2-adic • E_2/\mathbb{F}_{q_2} Cocks–Pinch algorithm pairing-friendly • $r_2 = q_1$

- q is a prime or a prime power
- t is relatively prime to q
- r is prime • r divides q + 1 - t• r divides $q^{k} - 1$ (smallest $k \in \mathbb{N}^{*}$) r is a **fixed** chosen prime that divides q + 1 - tand $q^{k} - 1$ (smallest $k \in \mathbb{N}^{*}$)
- $r \text{ divides } q^k 1 \text{ (smallest } k \in \mathbb{N}^*)$ and $q^k 1 \text{ (smallest } k \in \mathbb{N}^*)$ • $4q - t^2 = Dy^2 \text{ (for } D < 10^{12} \text{) and some integer } y$

Algorithm 1: Cocks-Pinch method

- 1 Fix k and D and choose a prime r s.t. k|r-1 and $\left(\frac{-D}{r}\right) = 1$;
- 2 Compute $t = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$;

3 Compute
$$y=(t-2)/\sqrt{-D} \mod r;$$

- 4 Lift t and y in \mathbb{Z} ;
- 5 Compute $q = (t^2 + Dy^2)/4$ (in \mathbb{Q});
- 6 back to 1 if q is not a prime integer;

- $\rho = \log_2 q / \log_2 r \approx 2$ (because $q = f(t^2, y^2)$ and $t, y \stackrel{\$}{\leftarrow} \mod r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm 2: Brezing-Weng method

- 1 Fix k and D and choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient ¹ s.t. $\sqrt{-D}$ and the primitive k-th root of unity ζ_k are in $K = \mathbb{Q}[x]/r(x)$;
- 2 Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_k + 1$ in K;
- 3 Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in K;
- 4 Compute $q(x) = (t^2(x) + Dy^2(x))/4$ in $\mathbb{Q}[x]$;
 - $\rho = 2 \max (\deg t(x), \deg y(x)) / \deg r(x) < 2$
 - r(x), q(x), t(x) but $\exists x_0 \in \mathbb{Z}^*, r(x_0) = r_{fixed}$ and $q(x_0)$ is prime ?

Y. El Housni, A. Guillevic

¹conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces infinitely many primes for infinitely many integers.

- $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k}) \cong E'[r](\mathbb{F}_{q^{k/d}})$ for a twist E' of degree d.
- When -D = -3, there exists a twist E' of degree d = 6.
- Associated with a choice of $\xi \in \mathbb{F}_{q^{k/6}}$ s.t. $x^6 \xi \in \mathbb{F}_{q^{k/6}}[x]$ is irreducible, the equation of E' can be either

•
$$y^2 = x^3 + b/\xi$$
 and we call it a D-twist or

•
$$y^2 = x^3 + b.\xi$$
 and we call it a M-twist.

- For the D-type, $E'
 ightarrow E: (x,y) \mapsto (\xi^{1/3}x,\xi^{1/2}y)$,
- For the M-type $E' o E: (x,y) \mapsto (\xi^{2/3}x/\xi,\xi^{1/2}y/\xi)$

Cocks–Pinch method

- k = 6 and −D = −3 ⇒ 128-bit security, G₂ coordinates in F_q, GLV multiplication over G₁ and G₂
- restrict search to size(q) \leq 768 bits \implies smallest machine-word size

Ø Brezing–Weng method

- choose $r(x) = q_{BLS12-377}(x)$
- $q(x) = (t^2(x) + 3y^2(x))/4$ is reducible $\implies q(x_0)$ cannot be prime
- lift $t = r \times h_t + t(x_0)$ and $y = r \times h_y + y(x_0)$ [FK19, GMT20]

We found the following curve $E: y^2 = x^3 - 1$ over \mathbb{F}_q of 761-bit. The parameters are expressed in polynomial forms and evaluated at the seed $x_0 = 0x8508c00000000$. For pairing computation we use the M-twist curve $E': y^2 = x^3 + 4$ over \mathbb{F}_q to represent \mathbb{G}_2 coordinates.

Our curve,
$$k = 6$$
, $D = 3$, $r = q_{BL512-377}$
 $r(x) = (x^6 - 2x^5 + 2x^3 + x + 1)/3 = q_{BL512-377}(x)$
 $t(x) = x^5 - 3x^4 + 3x^3 - x + 3 + h_t r(x)$
 $y(x) = (x^5 - 3x^4 + 3x^3 - x + 3)/3 + h_y r(x)$
 $q(x) = (t^2 + 3y^2)/4$
 $q_{h_t=13,h_y=9}(x) = (103x^{12} - 379x^{11} + 250x^{10} + 691x^9 - 911x^8)$
 $-79x^7 + 623x^6 - 640x^5 + 274x^4 + 763x^3 + 73x^2 + 254x + 229)/9$

Our work Features

- The curve is over 761-bit instead of 782-bit, we save one machine-word of 64 bits.
- The curve has an embedding degree k = 6 and a twist of order d = 6, allowing G₂ coordinates to be in F_q (factor 6 compression).
- The curve parameters have polynomial expressions, allowing fast implementation.
- The curve has a very efficient optimal ate pairing.
- The curve has CM discriminant -D = -3, allowing fast GLV multiplication on both \mathbb{G}_1 and \mathbb{G}_2 .
- The curve has fast subgroup checks and fast cofactor multiplication on \mathbb{G}_1 and \mathbb{G}_2 via endomorphisms.
- \bullet The curve has fast and secure hash-to-curve methods for both \mathbb{G}_1 and $\mathbb{G}_2.$

Our work Cost estimation of a pairing

$$\begin{split} e(P,Q) &= f_{t-1,Q}(P)^{(q^6-1)/r} & (t-1) \text{ of 388 bits, } Q \in \mathbb{F}_{q^3} \\ e(P,Q) &= (f_{x_0+1,Q}(P)f_{x_0^3-x_0^2-x_0,Q}^q(P))^{(q^6-1)/r} & x_0 \text{ of 64 bits, } Q \in \mathbb{F}_q \end{split}$$

$$(q^{6}-1)/r = \underbrace{(q^{3}-1)(q+1)}_{\text{easy part}} \underbrace{(q^{2}-q+1)/r}_{\text{hard part}} = \begin{cases} \text{ easy part} \times (w_{0}+qw_{1}) \\ \text{ easy part} \times f(x_{0},q^{i}) \end{cases}$$

Prime	Pairing	Miller loop	Exponentiation	Total
377-bit	ate	6705 m ₃₈₄	7063 m ₃₈₄	13768 m ₃₈₄
782-bit	ate	47298 m ₈₃₂	10521 m ₈₃₂	57819 m ₈₃₂
761-bit	opt. ate	7911 m ₇₆₈	5081 m ₇₆₈	12992 m ₇₆₈
	Prime 377-bit 782-bit 761-bit	PrimePairing377-bitate782-bitate761-bitopt. ate	Prime Pairing Miller loop 377-bit ate 6705 m ₃₈₄ 782-bit ate 47298 m ₈₃₂ 761-bit opt. ate 7911 m ₇₆₈	Prime Pairing Miller loop Exponentiation 377-bit ate 6705 m ₃₈₄ 7063 m ₃₈₄ 782-bit ate 47298 m ₈₃₂ 10521 m ₈₃₂ 761-bit opt. ate 7911 m ₇₆₈ 5081 m ₇₆₈

 m_b base field multiplication, b bitsize in Montgomery domain on a 64-bit platform

x4.5 less operations in a smaller field by one machine-word

Implemented in libff library [sl18] (with GMP 6.1.2.2) and tested on a 2.2 GHz Intel Core i7 x86_64 processor with 16 Go 2400 MHz DDR4 memory running macOS Mojave 10.14.6. C++ compiler is clang 10.0.1. Profiling routines use clock_gettime and readproc calls.

url: https://github.com/EYBlockchain/zk-swap-libff/tree/ey/libff/algebra/ curves/bw6_761

Curve	Pairing	Miller loop	Exponentiation	Total	Eq. 1
BLS12	ate	0.0025s	0.0049s	0.0074s	0.0149s
SW6	ate (proj.)	0.0388s	0.0110s	0.0499s	0.1274s
SW6	ate (aff.)	0.0249s	0.0110s	0.0361s	0.0875s
This	opt. ate	0.0053s	0.0044s	0.0097s	0.0203s

x5 faster to compute a pairing (in projective coordinates)
x6.27 faster to verify a Groth16 proof (in projective coordinates)
x3.7 faster to compute a pairing (in affine coordinates)
x4.22 faster to verify a Groth16 proof (in affine coordinates)

Applications Blockchain projects

- Zexe: user-defined assets, decentralized exchanges and policy-enforcing stablecoins
- Celo: batched verification of BLS signatures
- Filecoin: circuit splitting
- Baseline protocol (EY, Consensys) [ECM20]: batching zkSNARK proofs

paper: ia.cr/2020/351

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation.

In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society. https://ia.cr/2018/962.

 Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
 Scalable zero knowledge via cycles of elliptic curves.
 In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014*, *Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

References II

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann architecture.

In Kevin Fu and Jaeyeon Jung, editors, *USENIX Security 2014*, pages 781–796. USENIX Association, August 2014.

- Alessandro Chiesa, Lynn Chua, and Matthew Weidner. On cycles of pairing-friendly elliptic curves. SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.
- **EY**, Consensys, and Microsoft. Baseline protocol, 2020.

https://github.com/ethereum-oasis/baseline.

References III

Youssef El Housni and Aurore Guillevic.

Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition.

Cryptology ePrint Archive, Report 2020/351, 2020. https://eprint.iacr.org/2020/351.

- Georgios Fotiadis and Elisavet Konstantinou. TNFS resistant families of pairing-friendly elliptic curves. *Theoretical Computer Science*, 800:73–89, 31 December 2019. https://ia.cr/2018/1017.
 - David Freeman, Michael Scott, and Edlyn Teske.
 A taxonomy of pairing-friendly elliptic curves.
 Journal of Cryptology, 23(2):224–280, April 2010.

References IV

Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks–Pinch curves of embedding degrees five to eight and optimal ate pairing computation.

Des. Codes Cryptogr., pages 1-35, March 2020. https://hal.inria.fr/hal-02305051.

Jens Groth.

On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016, Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Heidelberg, May 2016.

References V

Izaak Meckler and Evan Shapiro. Coda: Decentralized cryptocurrency at scale. O(1) Labs whitepaper, 2018. https://cdn.codaprotocol.com/v2/static/ coda-whitepaper-05-10-2018-0.pdf.

scipr lab.

libff: C++ library for finite fields and elliptic curves., 2018. https://github.com/scipr-lab/libff.