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Zero-knowledge proof
What is a zero-knowledge proof?

”I have a sound, complete and zero-knowledge proof that a statement is
true”.

Sound

If the statement is false, no cheating prover can convince an honest verifier
that it is true, except with some small probability.

Complete

If the statement is true, an honest verifier will be convinced of this fact by
an honest prover.

Zero-knowledge

If the statement is true, no verifier learns anything other than the fact that
the statement is true.
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Zero-knowledge proof
ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct, non-
interactive proof that a statement is true and that I know a related secret”.

Succinct

An honestly-generated proof is very ”short” and ”easy” to verify.

Non-interactive

No interaction is necessary between the prover and the verifier in order to
respectively generate the proof and verify it.

ARgument of Knowledge

An honest verifier is convinced that a comptutationally bounded prover
knows a secret information.
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Zero-knowledge proof
Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private
input such that z := F (x ,w).
A ZK-SNARK consists of algorithms S ,P,V s.t. for a security parameter λ:

Trapdoored Setup: (pk, vk) ← S(F , τ , 1λ)

Prove: π ← P(x , z ,w , pk)

Verify: 0/1 ← V (x , z , π, vk)

Y. El Housni, A. Guillevic zkSummit 5, March 2020 5 / 22



ZK-SNARK

Succinctness: An honestly-generated proof is very ”short” and ”easy” to
verify.

Definition [BCTV14b]

A succinct proof π has size Oλ(1) and can be verified in time
Oλ(|F |+ |x |+ |z |), where Oλ(.) is some polynomial in the security
parameter λ.
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Notations
Pairing-based zkSNARK

E : y2 = x3 + ax + b elliptic curve defined over Fq, q a prime power.

r prime divisor of #E (Fq) = q + 1− t, t Frobenius trace.

−D CM discriminant, 4q = t2 + Dy2 for some integer y .

d degree of twist.

k embedding degree, smallest integer k ∈ N∗ s.t. r | qk − 1.

G1 ⊂ E (Fq) and G2 ⊂ E (Fqk ) two groups of order r .

GT ⊂ F∗
qk group of r -th roots of unity.

pairing e : G1 ×G2 → GT .
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Proof composition
A proof

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F

(pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}
`
i=0, vkγ , vkδ) ∈ GT ×G`+1

1 ×G2 ×G2

π ← P(Φ,w , pk) where

π = (A,B,C ) ∈ G1 ×G2 ×G1 (Oλ(1))

0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai ]vkπi depends only on the instance Φ and
vkα,β = e(vkα, vkβ) can be computed in the trusted setup for
(vkα, vkβ) ∈ G1 ×G2.
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Proof composition
A proof of a proof

Since the verification algorithm V (Eq. 1) is a NP program, generate a new
proof that verifies the correctness the old proof.
Remember that, for pairing-based SNARKs, Eq. 1 is in Fqk and Φ in Fr ,
where q is the field size of an elliptic curve E and r its prime subgroup order.

1st attempt: choose a curve for which q = r (impossible)

2nd attempt: simulate Fq operations via Fr operations (× log q blowup)

3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [BCTV14a, BCG+20]
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Proof composition
cycles and chains of pairing-friendly elliptic curves

Definition

An m-chain of elliptic curves is a list of distinct curves E1/Fq1 , . . . ,
Em/Fqm where q1, . . . , qm are large primes and

#E1(Fq1) = q2, . . . ,#Ei (Fqi ) = qi+1, . . . ,#Em−1(Fqm−1) = qm

Definition

An m-cycle of elliptic curves is a list of distinct curves E1/Fq1 , . . . ,
Em/Fqm where q1, . . . , qm are large primes and

#E1(Fq1) = q2, . . . ,#Ei (Fqi ) = qi+1, . . . ,#Em−1(Fqm−1) = qm,

#Em(Fqm ) = q1
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Proof composition
cycles and chains of pairing-friendly elliptic curves

MNT4

MNT6

r6 = q4r4 = q6

libff [sl18]

MNT4-753

MNT6-753

r ′6 = q′4r ′4 = q′6

Coda [MS18]

SW6

BLS12-377

rSW 6 = qBLS

Our curve

BLS12-377

r = qBLS

Zexe [BCG+20] This work [EG20]

Figure: Examples of pairing-friendly amicable cycles and chains.

Y. El Housni, A. Guillevic zkSummit 5, March 2020 11 / 22



Proof composition
cycles and chains of pairing-friendly elliptic curves

E/Fq q r k d a, b λ

MNT4 q4 = r6 (298b) r4 = q6 (298b) 4 2 a = 2, b = ∗ 32
MNT6 q6 = r4 (298b) r6 = q4 (298b) 6 2 a = 11, b = ∗ 50

MNT4-753 q′4 = r ′6 (753b) r ′4 = q′6 (753b) 4 2 a = 2, b = ∗ 128
MNT6-753 q′6 = r ′4 (753b) r ′6 = q′4 (753b) 6 2 a = 11, b = ∗ 128

BLS12-377 qBLS (377b) rBLS (253b) 12 6 a = 0, b = 1 128
SW6 qSW 6 (782b) rSW 6 = qBLS (377b) 6 2 a = 5, b = ∗ 128

This work q (761b) r = qBLS (377b) 6 6 a = 0, b = −1 128

Table: 2-cycle and 2-chain examples.

Recall that E/Fq : y2 = x3+ax+b has a subgroup of order r , an embedding
degree k , a twist of order d and an approximate security of λ-bit.
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Our work
ZK-curves

SNARK
E/Fq BN, BLS12, BW12?, KSS16? . . . [FST10]

pairing-friendly
r − 1 highly 2-adic

Recursive SNARK (2-cycle)
E1/Fq1 and E2/Fq2 MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

both pairing-friendly
r2 = q1 and r1 = q2

r{1,2} − 1 highly 2-adic
q{1,2} − 1 highly 2-adic

Recursive SNARK (2-chain)
E1/Fq1 BLS12 (seed ≡ 1 mod 3.2adicity ) [BCG+20], ?

pairing-friendly
r1 − 1 highly 2-adic
q1 − 1 highly 2-adic

E2/Fq2 Cocks–Pinch algorithm

pairing-friendly
r2 = q1
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Our work
Snarky curve E2/Fq2

q is a prime or a prime power

t is relatively prime to q

r is prime

r divides q + 1− t

r divides qk − 1 (smallest k ∈ N∗)
4q − t2 = Dy2 (for D < 1012) and some integer y

r is a fixed chosen prime
that divides q + 1− t
and qk − 1 (smallest k ∈ N∗)

Algorithm 1: Cocks–Pinch method

1 Fix k and D and choose a prime r s.t. k |r − 1 and (−D
r ) = 1;

2 Compute t = 1 + x (r−1)/k for x a generator of (Z/rZ)×;

3 Compute y = (t − 2)/
√
−D mod r ;

4 Lift t and y in Z;
5 Compute q = (t2 + Dy2)/4 (in Q);
6 back to 1 if q is not a prime integer;
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Our work
Limitations and improvements over CP

ρ = log2 q/ log2 r ≈ 2 (because q = f (t2, y2) and t, y
$←− modr).

The curve parameters (q, r , t) are not expressed as polynomials.

Algorithm 2: Brezing–Weng method
1 Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x ] with

positive leading coefficient 1 s.t.
√
−D and the primitive k-th root of

unity ζk are in K = Q[x ]/r(x);
2 Choose t(x) ∈ Q[x ] be a polynomial representing ζk + 1 in K ;

3 Set y(x) ∈ Q[x ] be a polynomial mapping to (ζk − 1)/
√
−D in K ;

4 Compute q(x) = (t2(x) + Dy2(x))/4 in Q[x ];

ρ = 2 max (deg t(x), deg y(x))/ deg r(x) < 2

r(x), q(x), t(x) but ∃x0 ∈ Z∗, r(x0) = rfixed and q(x0) is prime ?

1conditions to satisfy Bunyakovsky conjecture which states that such a polynomial
produces infinitely many primes for infinitely many integers.
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Our work
Notes

G2 ⊂ E (Fqk ) ∼= E ′[r ](Fqk/d ) for a twist E ′ of degree d .

When −D = −3, there exists a twist E ′ of degree d = 6.

Associated with a choice of ξ ∈ Fqk/6 s.t. x6 − ξ ∈ Fqk/6 [x ] is

irreducible, the equation of E ′ can be either

y2 = x3 + b/ξ and we call it a D-twist or
y2 = x3 + b.ξ and we call it a M-twist.

For the D-type, E ′ → E : (x , y) 7→ (ξ1/3x , ξ1/2y),

For the M-type E ′ → E : (x , y) 7→ (ξ2/3x/ξ, ξ1/2y/ξ)
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Our work
Suggested construction: combines CP and BW

1 Cocks–Pinch method

k = 6 and −D = −3 =⇒ 128-bit security, G2 coordinates in Fq, GLV
multiplication over G1 and G2

restrict search to size(q) ≤ 768 bits =⇒ smallest machine-word size

2 Brezing–Weng method

choose r(x) = qBLS12−377(x)
q(x) = (t2(x) + 3y2(x))/4 is reducible =⇒ q(x0) cannot be prime
lift t = r × ht + t(x0) and y = r × hy + y(x0) [FK19, GMT20]
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Our work
The suggested curve: BW6-761

We found the following curve E : y2 = x3 − 1 over Fq of 761-bit. The
parameters are expressed in polynomial forms and evaluated at the seed
x0 = 0x8508c00000000. For pairing computation we use the M-twist curve
E ′ : y2 = x3 + 4 over Fq to represent G2 coordinates.

Our curve, k = 6, D = 3, r = qBLS12−377

r(x) = (x6 − 2x5 + 2x3 + x + 1)/3 = qBLS12−377(x)
t(x) = x5 − 3x4 + 3x3 − x + 3 + htr(x)
y(x) = (x5 − 3x4 + 3x3 − x + 3)/3 + hy r(x)
q(x) = (t2 + 3y2)/4
qht =13,hy =9(x) = (103x12 − 379x11 + 250x10 + 691x9 − 911x8

−79x7 + 623x6 − 640x5 + 274x4 + 763x3 + 73x2 + 254x + 229)/9
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Our work
Features

The curve is over 761-bit instead of 782-bit, we save one
machine-word of 64 bits.

The curve has an embedding degree k = 6 and a twist of order d = 6,
allowing G2 coordinates to be in Fq (factor 6 compression).

The curve parameters have polynomial expressions, allowing fast
implementation.

The curve has a very efficient optimal ate pairing.

The curve has CM discriminant −D = −3, allowing fast GLV
multiplication on both G1 and G2.

The curve has fast subgroup checks and fast cofactor multiplication
on G1 and G2 via endomorphisms.

The curve has fast and secure hash-to-curve methods for both G1 and
G2.
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Our work
Cost estimation of a pairing

e(P,Q) = ft−1,Q(P)(q6−1)/r (t − 1) of 388 bits, Q ∈ Fq3

e(P,Q) = (fx0+1,Q(P)f q
x3

0−x2
0−x0,Q

(P))(q6−1)/r x0 of 64 bits, Q ∈ Fq

(q6−1)/r = (q3 − 1)(q + 1)︸ ︷︷ ︸
easy part

(q2 − q + 1)/r︸ ︷︷ ︸
hard part

=

{
easy part× (w0 + qw1)
easy part× f (x0, q

i )

Curve Prime Pairing Miller loop Exponentiation Total

BLS12 377-bit ate 6705 m384 7063 m384 13768 m384

SW6 782-bit ate 47298 m832 10521 m832 57819 m832

This 761-bit opt. ate 7911 m768 5081 m768 12992 m768

mb base field multiplication, b bitsize in Montgomery domain on a 64-bit platform

x4.5 less operations in a smaller field by one machine-word

Y. El Housni, A. Guillevic zkSummit 5, March 2020 20 / 22



Our work
C++ implementation timings

Implemented in libff library [sl18] (with GMP 6.1.2 2) and tested on a 2.2 GHz Intel
Core i7 x86 64 processor with 16 Go 2400 MHz DDR4 memory running macOS Mojave
10.14.6. C++ compiler is clang 10.0.1. Profiling routines use clock gettime and
readproc calls.

url: https://github.com/EYBlockchain/zk-swap-libff/tree/ey/libff/algebra/

curves/bw6_761

Curve Pairing Miller loop Exponentiation Total Eq. 1

BLS12 ate 0.0025s 0.0049s 0.0074s 0.0149s

SW6 ate (proj.) 0.0388s 0.0110s 0.0499s 0.1274s

SW6 ate (aff.) 0.0249s 0.0110s 0.0361s 0.0875s

This opt. ate 0.0053s 0.0044s 0.0097s 0.0203s

x5 faster to compute a pairing (in projective coordinates)
x6.27 faster to verify a Groth16 proof (in projective coordinates)

x3.7 faster to compute a pairing (in affine coordinates)
x4.22 faster to verify a Groth16 proof (in affine coordinates)
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Applications
Blockchain projects

Zexe: user-defined assets, decentralized exchanges and
policy-enforcing stablecoins
Celo: batched verification of BLS signatures
Filecoin: circuit splitting
Baseline protocol (EY, Consensys) [ECM20]: batching zkSNARK
proofs

paper: ia.cr/2020/351
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